In the present work, the effect of isolated dust particles (FeO) with radius of the grain 0.1μm - 0.5μm of main plasma characteristics are investigated experimentally in direct current system by using magnetic field. The present of dust particle in the air plasma did effect on Paschen minimum and on the plasma properties in low pressure region. The effect of dust particles on discharge voltage, discharge current, plasma potential, floating potential, electron density, electron temperature and Debye length was investigation by using magnetic field. The measurements of parameters are taken by four cylindrical Langmuir probes. The results show the present of dust causes decreasing in discharge voltage with increase pressure while the discharge current was increased with increasing pressure. The floating potential and plasma potential of probe becomes more negatively. The electron density is increases in the present of dust particle which lead to decreases the electron temperature and Debye length.
In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreIn this paper, Al and Cu Plasmas that produced by pulsed Nd:YAG laser with fundamental wave length with a pulse duration of 6 nS focused onto Al and Cu targets in atmospheric air are investigated spectroscopically. The influence of pulse laser energy on the some Al and Cu plasmas characteristics was diagnosed by using optical emission spectroscopy for the wavelength range 320-740 nm. The results observed that the increase of pulse laser energy causes to increase all plasma characteristics of both plasmas under study and shown increasing of the emission line intensity. The appearance of the atomic and ionic emission lines of an element in the emission spectrum depends on the ionization energy of target atoms. The plasma characteristics ar
... Show MoreCopper plasma is generated with the existence of an external magnetic field and without its presence utilizing Nd:YAG laser (1064 nm ,9 ns) in different pulse laser energy which ranges from(100 to 400) mJ in a vacuum. Plasma parameter beta ) is least than 1, this indicates that the existence of magnetic field confinement effect is proven. Note that both the electron temperature and electron density increases with the laser pulse energy increasing , Both are higher in the presence of a magnetic field.
In this paper, the effect of iron oxide nanoparticles dust (Fe2O3 NPs) on the parameters of DC electric discharge plasma under vacuum in argon gas was studied with the presence of a mirror magnetron behind the electrodes (cathode and anode) at constant pressure and with different amounts of Fe2O3 nanoparticles. Calculations presented a reduction of the plasma emission intensity with the NPs content. Both the plasma density (calculated by Stark's broadening method) and the mean electron temperature (calculated using Boltzmann's equation) decreased with increasing the Fe2O3 nanoparticles dust content, which indicates clearly the effect of dust density on restricting
... Show MoreTo add more details about the effect of the axial magnetic field on the plasma profile, the breakdown voltage of air was investigated at low pressure (9-15 Pa) in the presence of axial magnetic field (0.01-0.04T). The air was ignited by a DC voltage between two plain electrodes of aluminum separated by a distance (8.5cm). The measurements showed that the discharge voltage decreases to a minimum value, then returns to increase over the minimum with increasing the magnetic field strength, at all pressures in the range. It was also observed that a maximum decrease in the discharge voltage is obtained near the minimum of Paschen curve from the right side. The decrease in the discharge voltage was caused mainly by the effect of magnetic
... Show MoreIn this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles
This study explains the effect of non-thermal (cold) plasma on wound of diabetic rats by (FE-DBD) system, 3cm probe diameter is used. The output power was ranged from (12-20) W. The effect of non-thermal plasma on wounds of a diabetic was observed with different exposure durations (20,30) sec., the plasma exposure duration decreases the sugar level in blood and the diameter of the wound. These results indicate the cold plasma can be used to enhance the insulin level (i.e., blood sugar) and wounds treatment.
Abstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show MoreIn this research is estimated the function of reliability dynamic of multi state systems and their compounds and for three types of systems (serial, parallel, 2-out-of-3) and about two states (Failure and repair) depending on calculating the structur function allow to describing the behavior of
The study aimed to determine the impact of energy for the north and south magnetic poles on the the growth of bacteria isolated from cases of tooth decay, 68 swabs were collected from surfaces of faulty tooth, the detected of Staphylococcus aureus
... Show More