Preferred Language
Articles
/
ijs-5829
An Approach Based on Decision Tree and Self-Organizing Map For Intrusion Detection
...Show More Authors

In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using Kdd cup 99 dataset. The experimental results displayed that the proposed module are best suited due to their high detection rate with false alarm rate.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 17 2019
Journal Name
Lecture Notes In Networks And Systems
Features Selection for Intrusion Detection System Based on DNA Encoding
...Show More Authors

Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system

... Show More
Scopus (2)
Scopus
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
DNA Encoding for Misuse Intrusion Detection System based on UNSW-NB15 Data Set
...Show More Authors

Recent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is app

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method
...Show More Authors

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
A Multi-Objective Evolutionary Algorithm based Feature Selection for Intrusion Detection
...Show More Authors

Nowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (6)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Breast Cancer Detection using Decision Tree and K-Nearest Neighbour Classifiers
...Show More Authors

      Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the  most effective parameter, particularly when Age<49.5. Whereas  Ki67  appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu

... Show More
Scopus (4)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of The College Of Education For Women
(Evaluation and Mobility) As Two self-Organizing Posts for University Students
...Show More Authors

One of the important goals in the learning process is to be effective learning through the self-direction of the learner , because it has an impact on the effort of learners , it is better to be a learner responsible for learning and independent of the acquisition of knowledge ,

اذ اكدتكثيرAs many have confirmed منFrom الدراساتStudies والادبياتAnd literature انthat فشلالكثير The failure of many منFrom الطلبةStudents فيin a تنظيمgroup المعلوماتthe information ومعالجتهاAnd processed اثناءduring عمليةProcess تعلمهمLearn them لاNo يرجعReturns الىto me انخفاضdrop فيin a درجةDegree ذكائهمTheir intelligence اوor عدمNo

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Efficient method to Recognition of Anemia Images based on Moment Invariants and Decision tree classifier
...Show More Authors

Anemia is one of the common types of blood diseases, it lead to lack of number of RBCs (Red Blood Cell) and amount hemoglobin level in the blood is lower than normal.
In this paper a new algorithm is presented to recognize Anemia in digital images based on moment variant. The algorithm is accomplished using the following phases: preprocessing, segmentation, feature extraction and classification (using Decision Tree), the extracted features that are used for classification are Moment Invariant and Geometric Feature.
The Best obtained classification rates was 84% is obtained when using Moment Invariants features and 74 % is obtained when using Geometric Feature. Results indicate that the proposed algorithm is very effective in detect

... Show More
View Publication Preview PDF