In this paper we introduce and study the concepts of semisimple gamma modules , regular gamma modules and fully idempotent gamma modules as a generalization of semisimple ring. An module is called fully idempotent (semisimple , regular) if for all submodule of (every submodule is a direct summand, for each , there exists and such that . We study some properties and relationships between them.
Let R be a semiprime ring with center Z(R) and U be a nonzero ideal of R. An additive mappings are called right centralizer if ( ) ( ) and ( ) ( ) holds for all . In the present paper, we introduce the concepts of generalized strong commutativity centralizers preserving and generalized strong cocommutativity preserving centralizers and we prove that R contains a nonzero central ideal if any one of the following conditions holds: (i) ( ) ( ), (ii) [ ( ) ( )] , (iii) [ ( ) ( )] [ ], (iv) ( ) ( ) , (v) ( ) ( ) , (vi) [ ( ) ( )] , (vii) ( ) ( ) ( ), (viii) ( ) ( ) for all .
The ï¤-mixing of ï§ - transition in Er 168 populated in Er(n,n ) Er 168 168 ï‚¢ï§ reaction is calculated in the present work by using a2- ratio method. This method has used in previou studies [4, 5, 6, 7] in case that the second transition is pure or for that transition which can be considered as pure only, but in one work we applied this method for two cases, in the first one for pure transition and in the 2nd one for non pure transitions. We take into accunt the experimental a2- coefficient for previous works and ï¤-values for one transition only [1]. The results obtained are, in general, in agood agreement within associated errors, with those reported previously [1], the discrepancies that occur are due to in
... Show MoreAbstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.
In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.
In this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.
Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i
... Show MoreLet R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.
We define a new concept, called " generalized right -derivation", in near-ring and obtain new essential results in this field. Moreover we improve this paper with examples that show that the assumptions used are necessary.
In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.
New compounds containing heterocyclic units have been synthesized. These compounds include 2-amino 5- phenyl-1,3,4-thiadiazole (1) as starting material to prepare the Schiff bases 2N[3-nitrobenzylidene -2 hydroxy benzylidene and 4-N,N-dimethyl aminobenzylidene] -5-phenyl-1,3,4-thiadiazole (2abc) , 2N[3-nitrophenyl, 2-hydroxyphenyl or 4-N,N-dimethylaminophenyl] 3-]2-amino-5-phenyl-1,3,4-thiadiazole]-2,3-dihydro-[1,3]oxazepine-benzo-4,7-dione] (3abc), 2N[3-nitrophenyl,2-hydroxyphenyl,4-N,N-dimethylaminophenyl]-3-[2-amino-5-phenyl-1,3,4-thiadiazole-2-yl]-2,3-dihydro-[1,3]oxazepine-4,7-dione[(4abc), 2-N-[3-nitrophenyl, 2-hydroxyphenyl or 4-N,N-dimethylaminophenyl]-3-[2-amino-5-phenyl-1,3,4-thiadiazole-2yl]-1,2,3-trihydro-benzo-[1,2-e][1,3] diaz
... Show More