A series of new maleimide monomers substituted with Schiff base moieties were synthesized via acid-catalyzed condensation of 3-(N-maleimidyl)phenyl hydrazide with aromatic aldehydes and ketones. The newly synthesized monomers were introduced in free radical chain growth homopolymerization producing five new polymaleimides with pendent Schiff base moieties .The new monomers were introduced also in free radical chain growth copolymerization with acrylonitrile producing new five copolymaleimides containing pendent Schiff base moieties. The new homopolymers and copolymers are of great importance since incorporation of bulky Schiff base moieties in their repeating units exhibit them better solubility and processing properties which made them suitable for a variety of important applications.
A series of nine new Schiff bases based on N-(4-acetophenyl)succinimide were synthesized via multistep synthesis. In the first step N-(4-acetophenyl)succinamic acid was prepared via reaction of succinic anhydride with 4-aminoacetophenone. The prepared amic acid was dehydrated in the second step producing N-(4-acetophenyl)succinimide. The prepared succinimide represents a modified methyl ketone bearing succinimde cycle and ready for introducing in condensation reaction thus in the third step the prepared imide was introduced in acid-catalyzed condensation reaction with a variety of primary aromatic amines affording the new target Schiff bases. The results of antibacterial screening of the newly synthesized Schiff bases indicated that they
... Show MorePolyimides are widely used in high-temperature plastics, adhesives, dielectrics, photoresists, nonlinear optical materials, separation membrane materials, and Langmuir-Blodgett (LB) films. They are commonly regarded as the most heat-resistant polymers. This work involved the synthesis of a new bismaleimide homopolymer and copolymer by performing many steps. The synthesis of compound (1) (bis [4-(amino phenyl) Schiff base] tolidine) via condensation of o-tolidine with two moles of 4-aminoacetophenone. Secondly, compound (1) was combined with maleic anhydride to form compound (2) (4, 4ˉ-bis[4-(N-maleamic acid) phenyl Schiff base] toluidine). Thirdly, a dehydration reaction was carried out affording compound (3) (4,4ˉ-bis [4-(N-maleimidyl
... Show MoreA new series of schiff base and aminothiadiazole derivatives of N- substituted phthalimide (I-VI) were synthesized. In this work, the intermediate 4-(1,3-dioxoisoindolin-2-yl)benzaldehyde compound (I), was formed by reaction of 4-amino benzaldehyde with phthalic anhydride in glacial acetic acid(GAA). A series of Schiff bases (IV-VI) was prepared by the reaction of benzidine with compound (I) in ethanol and presence of GAA as a catalyst to form compound (IV) which react with compound (I) and p-nitro benzyldehyde to give compound (V) and (VI) respectively. A new phthalimide thiosemi-carbazone derivative (ll) was prepared by reaction of compound (l) with thiosemi-carbazide HCl in the presence of equimolar amount of sodium acetate. Fina
... Show MoreObjective: This study involved the synthesis of new Schiff bases and 1,3-oxazepine derivatives from the baclofen drug and study the anticancer activities. Methods: Baclofen was initially reacted with aromatic aldehydes to create Schiff base derivatives (Ia–Ib), which were then closed in the next step using anhydrous acids to form oxazepine derivatives (IIa–IId). Results: The title compounds were synthesized successfully and identified using FT-IR, 1H NMR, and 13C NMR spectroscopy. Additionally, compound (IIc)’s (3-(4-chloro-phenyl)-4-[2-(4nitro-phenyl)-4,7-dioxo-4,7-dihydro-[1,3] oxazepin-3-yl]butyric acid) anticancer activity was assessed using MTT assay against FTC-133 (thyroid cancer) compared with WRL-68 (normal cell line). Discus
... Show MoreSeveral new copolymer containing imides were prepared from the corresponding
copolymers containing amic acids using dehydrating agent such as acetyl chloride –
tri ethyl amine mixture. The obtained yields were different ranging from 65% to
80%. Readily polymerized unsaturated copolymers containing imides free radically
using azobisisobuty ronitrile (AIBN) as initiator to yield high molecular weight
copolymers. All the prepared resins were characterized IR. NMR. Elemental
analysis. TG and DTG Techniques.
The work involves synthesis of new Schiff bases ( [V]a, b and [VI]a, b), pyrazoles[VII]a, b and pyrazolines[VIII]a, b derivatives containing isoxazoline unit starting with chalcones. 4bromoacetophenone was reacted with 4-hydroxybenzaldehyde or 4-hydroxyacetophenone was reacted with 4-bromobenzaldehyde in basic medium to give chalcone by Claisen-Schemidt reaction. The chalcons [I]a, b was reacted with hydroxylamine hydrochloride to form isoxazolines [II]a, b. which were reacted with ethyl chloro acetate in basic medium to get ester compounds[III]a, b .The condensation new ester[III]a, b with hydrazine hydrate80% yieldedacid hydrazide [IV]a, b.The later compound refluxing with 4-substituted benzaldehyde in dry benzene to
... Show MoreObjectives: Six different Schiff bases were synthesized from ampicillin and amoxicillin with isatin, 5-bromoisatin, and 5-nitroisatin. Methods: Ampicillin and Amoxicillin are linked directly through their α-amino groups to the acyl side chain with isatin and isatin derivatives by nucleophilic addition using glacial acetic acid as a catalyst. Results: chemical structures of these Schiff bases were confirmed using FTIR, 1H NMR and elemental microanalysis. The antibacterial activity was evaluated by measuring minimum inhibitory concentration (MIC) values and showed various degrees of antibacterial activities when compared with parent drugs. Compounds 1a and 2b, which are the Schiff bases of ampicillin and amoxicillin with isatin, showed very
... Show MoreTwo new Schiff bases (S1,S2) derived from 2-Amino-2-deoxy chitosamine and mnitrobenzaldehyde
(S1), and with salicylaldehyde (S2) were prepared and
characterized using FTIR, UV and mass spectrometry. New complexes of the
transition metal ions Co (II), Ni (II), Pd (II), Pt (II) with the two ligands were
synthesized and their structures were elucidated depending on atomic absorption,
FTIR, UV-visible spectra in addition to magnetic susceptibility and electrical
conductivity measurement. Metal to ligand [M: L] ratio was obtained for all
complexes in ethanol using molar ratio method, which gave comparable results with
those obtained for the solid complexes. Stability constant of the complexes were
determined using s