Preferred Language
Articles
/
ijs-5781
Spectroscopic and Thermal Properties for Exploding Silver Wire Plasma in Deionized Water
...Show More Authors

    The goal of this research is to use optical emission spectroscopy to investigate the parameters of exploding silver wire plasma. The silver discharge plasma's emission spectra were recorded and studied. For silver wire of diameter 0.4 mm and different currents 75,100, and 125A in deionized water, the plasma electron temperature ( ) was calculated by Boltzmann plot and container plasma medium temperature by thermal camera, and the electron density ( ) was computed by Stark broadening using the hydrogen (H line) at 656.279 nm With increasing current from 75 to 125 A, the electron density (ne) increased from 3.160×  to 8.762×   , while electron temperatures increased from 0.571 to 1.334 eV under the same conditions.  The plasma's optical emission spectrum (OES) includes a peak at 653 nm that corresponds to the H line of the hydrogen atom, as well as additional peaks that belong to Ag (AgI and AgII lines). Researchers looked into the relationship between plasma electron temperature, emission line intensity, and number density. Nanoparticle concentration rises as the intensity of the emission line rises, while their size decreases. It is feasible to deduce that plasma parameters have a regulated relationship with the concentration and size of nanoparticles produced.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees21gr
AIP Conference Proceedings 2437, 020060 (2022); https://doi.org/10.1063/5.0092690 2437, 020060© 2022 Author(s).Theoretical calculation of the electroniccurrent at N3 contact with TiO2 solar celldevices (3) (PDF) Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].
...Show More Authors

Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].

View Publication
Crossref (2)
Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Improved 𝑫−𝑯𝒆 𝟑 Fusion Reaction Characteristics Parameters
...Show More Authors

   The most likely fusion reaction to be practical is Deuterium and Helium-3 (𝐷−𝐻𝑒
 3 ), which is highly desirable because both Helium -3 and Deuterium are stable and the reaction produces a 14 𝑀𝑒𝑉 proton instead of a neutron and the proton can be shielded by magnetic fields. The strongly dependency of the basically hot plasma parameters such as reactivity, reaction rate, and energy for the emitted protons, upon the total cross section, make the problems for choosing the desirable formula for the cross section, the main goal for our present work.

View Publication Preview PDF