In this paper, we define a new subclass of multivalent functions defined by the generalized integral operator with negative coefficients in the open unit disk U. We also give and study some interesting properties such as coefficient estimates, subordination theorems and integral means inequalities by using the famous Littlewood's subordination theorem. Finally, we conclude a type of inequalities that is upper bound and lower bound for topology multivalent functions of all analytic functions.
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
In this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.
The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
In this paper, we show many conclusions on the Quasi-Hadamard products of new Subclass of analytic functions of β-Uniformly univalent function defined by Salagean q-differential operator.
In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.
We presented in this paper a new class containing analytic univalent functions defined on unit disk. We obtained many geometric properties , like , coefficient inequality , distortion and growth theorems, convolution property, convex set, arithmetic mean and radius of starlikness and convexity by using Gaussian hypergeometric function for the class
In this paper, we presented new types of Mc-function by using ðœ”-open and ð‘-open sets some of them are weaker than Mc-function and some are stronger, which are ðœ”Mc-function, Mðœ”c-function, ðœ”Mðœ”c-function, ð‘Mc-function, Mð‘c-function and ð‘Mð‘c-function, also we submitted new kinds of continuous functions and compact functions and we illustrated the relationships between these types. The purpose of this paper is to expand the study of Mcfunction and to get results that we need to find the relationship with the types that have been introduced.
In the present work, a program for calculating the coefficients of the Aplanatic Cassegrain Telescope (ACT) system, free from the effects of spherical and coma aberrations, were constructed. In addition, the two-mirrors of the optical system, as aspherical surfaces, were adopted. This means, that the two-equations of the mirrors are assumed to be polynomial function of five even terms only. The numerical method, least-squares curve fitting method to calculate the two-mirror coefficients system, was adopted. For choosing the values and ratios that give the best results, Rayleigh Criterion (Rayleigh Limit), for purpose of comparison and preference, was adopted.