Preferred Language
Articles
/
ijs-5772
A Prediction of Skin Cancer using Mean-Shift Algorithm with Deep Forest Classifier
...Show More Authors

      Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 13 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Evaluation of Estradiol and Prolactin Serum Levels "In Premenopausal; and Postmenopausal" Women with ((Breast Cancer)) In Baghdad City
...Show More Authors

Objective:To Evaluate of Estradiol and Prolactin hormones levels for Breast Cancer women in
Baghdad City.
Methodology: The current study was conducted on 60 breast cancer women and 40 apparently
healthy subjects to evaluate the levels of estradiol and prolactin "hormones in the serum" of
({premenopausal & postmenopausal}) breast cancer and healthy controle women. Estradiol and
prolactin hormones estimated for all cases by using the IMMULITE 2000 instrument that performs
chemiluminescent immunoassays results are calculated for each sample.Data were analysed using
SPSS-18.data of two groups was comparison by the student's t-test.
Results: The results showed a non significant""(P>0.05) elevation in the –mean

... Show More
View Publication Preview PDF
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Linear Prediction of Sum of Two Poisson Process
...Show More Authors

Our goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz

View Publication Preview PDF
Publication Date
Sat Jan 04 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Cephalometric evaluation of a sample of Iraqi adults with normal occlusion using tetragon analysis
...Show More Authors

Background: This study aimed to determine the cephalometric values of tetragon analysis on a sample of Iraqi adults with normal occlusion. Material and methods: Forty digital true lateral cephalometric radiographs belong to 20 males and 20 females having normal dental relation were analyzed using AutoCAD program 2009. Descriptive statistics and sample comparison with Fastlicht norms were obtained. Results: The results showed that maxillary and mandibular incisors were more proclined and the maxillary/mandibular planes angle was lower in Iraqi sample than Caucasian sample. Conclusion: It's recommended to use result from this study when using tetragon analysis for Iraqis to get more accurate result.

View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Collision Avoidance Using Cat Swarm Algorithm for Multi Mobile Robot Path Planning in Dynamic Environment
...Show More Authors

In this paper, we proposed a hybrid control methodology using improved artificial potential field with modify cat swarm algorithm to path planning of decoupled multi-mobile robot in dynamic environment. The proposed method consists of two phase: in the first phase, Artificial Potential Field method (APF) is used to generate path for each one of robots and avoided static obstacles in environment, and improved this method to solve the local minimum problem by using A* algorithm with B-Spline curve while in the second phase, modify Cat Swarm Algorithm (CSA) is used to control collision that occurs among robots or between robot with movable obstacles by using two behaviour modes: seek mode and track mode. Experimental results show that the p

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Active Verb Spell Checking Mem- + P in Indonesian Language Using the Jaro-Winkler Distance Algorithm
...Show More Authors

      The Indonesian language is used as a means of communication, including written communication. Unfortunately, many mistakes are found in Indonesian language writing, such as the writing of active verbs with the prefix mem- followed by the letter P. This problem can be addressed with the spell-checking method. Spell checking is a process in computer programs to check the spelling of each word in electronic text or documents in the correct order.  To better the active verb this study used  the Jaro-Winkler Distance algorithm. Meanwhile, for system development, the Iterative Waterfall method was used. The system output is active verbs of mem- + P which is standardized according to the Great Dictionary of the In

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
A Pseudo-Random Number Generator Based on New Hybrid LFSR and LCG Algorithm
...Show More Authors

      In many areas, such as simulation, numerical analysis, computer programming, decision-making, entertainment, and coding, a random number input is required. The pseudo-random number uses its seed value. In this paper, a hybrid method for pseudo number generation is proposed using Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG). The hybrid method for generating keys is proposed by merging technologies. In each method, a new large in key-space group of numbers were generated separately. Also, a higher level of secrecy is gained such that the internal numbers generated from LFSR are combined with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are linear structures and outputs

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Scienceasia
A combined compact genetic algorithm and local search method for optimizing the ARMA(1,1) model of a likelihood estimator
...Show More Authors

In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Recursive Prediction for Lossless Image Compression
...Show More Authors

     This paper introduced an algorithm for lossless image compression to compress natural and medical images. It is based on utilizing various casual fixed predictors of one or two dimension to get rid of the correlation or spatial redundancy embedded between image pixel values then a recursive polynomial model of a linear base is used.

The experimental results of the proposed compression method are promising in terms of preserving the details and the quality of the reconstructed images as well improving the compression ratio as compared with the extracted results of a traditional linear predicting coding system.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Computers And Electrical Engineering
Automatic illness prediction system through speech
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref