Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.
Background: Endometrial cancer is the most common gynecologic malignancy in the United States and the fourth most common cancer in women, comprising 6% of female cancers.
Objectives: The aim of this study is to investigate the antioxidant vitamins, Coenzyme Q10 and oxidative stress in patients with endometrial cancer.
Patients and methods: Fifty six endometrial cancer women patients with various clinical stages (stage 1A, stage1B, stage II, stage III, stage IV) mean aged 58.055 ± 10.561 years, and 30 healthy women volunteers mean aged 39.731 ± 13.504 years, were includes as control group.
Results: The results in this study revealed a highly significant decreased (P<0.01) in β- carotene, Vitamin E and significant increased
The aim of this research is to construct a three-dimensional maritime transport model to transport nonhomogeneous goods (k) and different transport modes (v) from their sources (i) to their destinations (j), while limiting the optimum quantities v ijk x to be transported at the lowest possible cost v ijk c and time v ijk t using the heuristic algorithm, Transport problems have been widely studied in computer science and process research and are one of the main problems of transport problems that are usually used to reduce the cost or times of transport of goods with a number of sources and a number of destinations and by means of transport to meet the conditions of supply and demand. Transport models are a key tool in logistics an
... Show MoreBootstrap is one of an important re-sampling technique which has given the attention of researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con
... Show MoreObjectives: The study aimed to determine the effect of chemotherapy on the life style of patients who
receive chemotherapy.
Methodology: A descriptive study was conducted in Specialty Surgery Teaching Hospital, Al-yamok
Teaching Hospital, and Radiation and Nuclear Medicine Hospital in Baghdad for the period from May
2007 to October 2008. A purposive "non-probability" sample of (loo) patients with bladder cancer
who receive chemotherapy where concerned in this study.
A questionnaire fom was constnicted for the purpose of the study and it was comprised of
two parts. The questiormaire consists of (125) items. They include (1) demographic information (2)
assessment of lifestyle dimension. The content validity of the q
The prospective study has been designed to determine some biomarkers in Iraqi female patients with
breast cancer. The current study contained 30 patients whose tissue samples have been collected from
hospitals in Medical City in Baghdad after consent patients themselves and used immunohistochemical
technique to determine these markers. The results showed a significant correlation between ER and PR tissue
markers (Sig = 0.000) and a significant correlation between cyclin E phenotype and cyclin E intensity (Sig =
0.001).
Background: Colorectal Cancer (CRC) is one of the most serious health problems and Herpes viridae may hasten the progression of colon cancer. Aim: The purpose of conducting this research is to investigate the existence of Herpes Simplex Virus (HSV1) infection in samples of Colorectal Cancer (CRC) compared with normal tissue. Material and Methods: 40 samples of tissues (30 patients ) with CRC, and (10 samples) of normal tissue (without cancer) were obtained, for immunohistochemically analysis of Herpes Simplex Virus (HSV1) expression Results: The results showed no significant data to justify the link between both Herpes Simplex Virus (HSV1) and human colorectal cancer. Despite of presence of Herpes Simplex Virus (HSV1) found in
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.