Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.
In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har
... Show MoreThis research attempts to shed light on a topic that is considered one of the most important topics of HRMs management, which is the Employee centric approach by examining its philosophy and understanding . To achieve the goal, the research relied on the philosophical analytical method, which is one of the approaches used in theoretical studies. The research reached a set of conclusions, the most important of which are the theoretical studies that addressed this entry in the English language and the lack of it in the Arabic language, according to the researcher's knowledge. The research reached a set of recommendations, the most important of which was that this approach needs more research, analysis and study at the practical and th
... Show MorePoverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distanc
... Show MoreThis research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show MoreThis study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t
... Show MoreThe litholog of Nahr Umr Formation was evaluated using the Acoustic Impedance (AI), Vp/Vs ratio cross plot colored by petrophysical properties (Vsh, PHIT, PHIE, and Sw) in Am-6-Am-10 wells. Bulk density is an important physical property that reflects matrix density and fluid density that exist in rocks pores. It is used as the main parameters to estimate physical characteristics (porosity, water saturation, shale volume, and others). AI was calculated using RHOB and VP logs. Shear velocity was calculated using Greenberg Castagna equations used for estimating the Vp/Vs ratio and the result Showed that the Nahr Umr Formation is composed of two main lithological units. The upper unit (depth 3540m -3672m) is composed of limestone (li
... Show MoreIn this article our goal is mixing ARMA models with EGARCH models and composing a mixed model ARMA(R,M)-EGARCH(Q,P) with two steps, the first step includes modeling the data series by using EGARCH model alone interspersed with steps of detecting the heteroscedasticity effect and estimating the model's parameters and check the adequacy of the model. Also we are predicting the conditional variance and verifying it's convergence to the unconditional variance value. The second step includes mixing ARMA with EGARCH and using the mixed (composite) model in modeling time series data and predict future values then asses the prediction ability of the proposed model by using prediction error criterions.
Background: Diabetes mellitus a major factor that has adverse effects on the vascular system and the heart. It causes an increase in cardiac muscle thickness, resulting in decreased compliance and increased peripheral arterial stiffness. This study aims to assess the left ventricular mass (LVM) and left ventricular hemodynamic changes in diabetic patients measured by Doppler echocardiography. Patients and Methods: The study included 50 diabetic patients ranging in age between 25 and 80 years, (mean age: 54.1 ± 15.10, 19 males, 31 females) and 50 healthy subjects, aged 25 to 80 years (mean age: 48.52 ± 14.45, 11 males, 39 females). Doppler echocardiography was used to assess left ventricular function. The measurements included
... Show More