Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift algorithm is used for segmenting the affected areas of skin cancer images. Finally, these segmented images are given to a deep learning classifier called Deep forest for prediction of skin cancer. The experiments are carried out on two publicly available datasets called ISIC-2019 and HAM10000 datasets for the analysis of segmentation and classification. From the outcomes, it is clearly verified that the projected model achieved better performance than the existing deep learning techniques.
Letrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.
The prostaglandins inside inflamed tissues are produced by cyclooxygenase-2 (COX-2), making it an important target for improving anti-inflammatory medications over a long period. Adverse effects have been related to the traditional usage of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of inflammation, mainly centered around gastrointestinal (GI) complications. The current research involves the creation of a virtual library of innovative molecules showing similar drug properties via a structure-based drug design. A library that includes five novel derivatives of Diclofenac was designed. Subsequently, molecular docking through the Glide module and determining the binding free energy implementing the P
... Show MoreBackground: Colorectal cancer is a high risk disease with rapidly progression medical problems and high mortality rate. Tissue polypeptide specific antigen can be classified as biomarker candidates in colorectal cancer and other kinds of cancer. Vascular endothelial-derived growth factor has a curial role in the formation of new blood vessels. DNA methylation may decrease invasiveness of cancer.
Objectives: This study was designed to measure the potential role of some serological biomarkers in the progression of colorectal cancer as well as their relations to P53 expression, global 5-methylcytosine.
Patients and Methods: This study involved of 60 patients with colorectal ca
... Show MoreFolate metabolism is fundamental and essential for DNA structure synthesis and repair. Change in genes that participate in folate metabolism can be linked with different types of malignant tumor, Therefore, this study was conducted to find out the association between methylenetetrahydrofolatereductaseMTHFR gene polymorphisms and risk of breast cancer in a sample of Iraqi patients. One Single Nucleotide Polymorphism ( SNP) including MTHFR C677T was calculated using a tetra primer ARMS PCR experiment assay. The results explained that (MTHFR C677T) consists of three genotype (CC, CT, TT), The CC genotype was the most frequent in patients and control group ( 40.00%) and(60.00%) ,respectively, while the lowest frequency was for TT genotype(26
... Show MoreColorectal cancer (CRC) is the most common gastrointestinal malignancy and one of the top ten common cancers worldwide with approximately 2 million cases. There are multiple risk factors that could lead to CRC emergence; of which are genetic polymorphisms. Excision repair cross-complementing group 2 (ERCC2) gene encodes for ERCC2 enzyme which plays a crucial role in maintaining genomic integrity by removing DNA adducts. Several studies suggested that there could be a link between genetic polymorphisms of ERCC2 gene and the risk of CRC development. Hence the present study aims to validate the relationship between the following ERCC2 single nucleotide polymorphisms (rs13181, rs149943175, rs530662943, and rs1799790) and CRC susceptibility. A t
... Show MoreImage quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat
... Show MoreThe primary objective of this paper is to improve a biometric authentication and classification model using the ear as a distinct part of the face since it is unchanged with time and unaffected by facial expressions. The proposed model is a new scenario for enhancing ear recognition accuracy via modifying the AdaBoost algorithm to optimize adaptive learning. To overcome the limitation of image illumination, occlusion, and problems of image registration, the Scale-invariant feature transform technique was used to extract features. Various consecutive phases were used to improve classification accuracy. These phases are image acquisition, preprocessing, filtering, smoothing, and feature extraction. To assess the proposed
... Show MoreAbstract Depending on their protective properties against different cases of Colorectal Cancer (CRC), vitamins C, D, and E are the main focus of this research. CRC is one of the global public health concerns. 30 healthy individuals provided serum samples, whereas the group of CRC patients was divided into three, totaling 90 individuals. Group I consisted of 30 newly diagnosed cases of CRC. Group II 30 consisted of consisted of 30 CRC patients who were administered three cycles of chemotherapy. Group III consisted of 30 diagnosed CRC patients who also have non-alcoholic fatty liver disease (NAFLD). The concentrations and groups of vitamins C, D, and E were evaluated using ELISA. The levels of Vitamin C were significantly lower (p &l
... Show More