Crow Search Algorithm (CSA) can be defined as one of the new swarm intelligence algorithms that has been developed lately, simulating the behavior of a crow in a storage place and the retrieval of the additional food when required. In the theory of the optimization, a crow represents a searcher, the surrounding environment represents the search space, and the random storage of food location represents a feasible solution. Amongst all the food locations, the one where the maximum amount of the food is stored is considered as the global optimum solution, and objective function represents the food amount. Through the simulation of crows’ intelligent behavior, the CSA attempts to find the optimum solutions to a variety of the problems that are related to the optimization. This study presents a new adaptive distributed algorithm of routing on CSA. Because the search space may be modified according to the size and kind of the network, the algorithm can be easily customized to the issue space. In contrast to population-based algorithms that have a broad and time-consuming search space. For ten networks of various sizes, the technique was used to solve the shortest path issue. And its capability for solving the problem of the routing in the switched networks is examined: detecting the shortest path in the process of a data packet transfer amongst the networks. The suggested method was compared with four common metaheuristic algorithms (which are: ACO, AHA, PSO and GA) on 10 datasets (integer, weighted, and not negative graphs) with a variety of the node sizes (10 - 297 nodes). The results have proven that the efficiency of the suggested methods is promising as well as competing with other approaches.
The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreA method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.
Acquires this research importance of addressing the subject (environmental problems) with
age group task, a category that children pre-school, and also reflected the importance of
research, because the (environmental problems) constitute a major threat to the continuation
of human life, particularly the children, so the environment is Bmchkladtha within
kindergarten programs represent the basis of a hub of learning where the axis, where the
kindergarten took into account included in the programs in order to help the development of
environmental awareness among children and get them used to the sound practices and
behaviors since childhood .
The research also detected problem-solving skills creative with kids Riyad
In this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.
This work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some
... Show More