Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing different MCDM approaches has been raised based on different perspectives; however, the latest one, namely, the fuzzy decision by opinion score method that was produced in 2020, has efficiently been able to solve some existing issues that other methods could not manage to solve. because of the multiple criteria decision-making problem and because some criteria have a conflict problem. The methodology of this research was divided into two main stages. The first stage related to identifying the decision matrix used eight different ML methods on chest X-ray (CXR) images and extracted a new decision matrix so as to assess the ML methods. The second stage related to FDOSM was utilized to solve the multiple criteria decision-making problems. The results of this research are as follows: (1) The individual benchmarking results of three decision makers are nearly identical; however, among all the used ML methods, neural networks (NN) achieved the best results. (2) The results of the benchmarking group are comparable, and the neural network machine learning method is the best among the used methods. (3) The final rank is more logical and closest to the decision-makers' opinion. (4) Significant differences among groups' scores are shown by our validation results, which indicate the authenticity of our results. Finally, this research presents many benefits, especially for hospitals and medical clinics, with a view to speeding up the diagnosis of patients suffering from COVID-19 using the best machine learning method.
A condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.
Simulation study was done for a varieties the model. using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.
In the present study, an attempt has been made to study the change in water quality of the river in terms of turbidity during lockdown associated with COVID-19. Iraq announced the longest-ever lockdown on 25 March 2020 due to COVID-19 pandemic.
In the absence of ground observations, remote sensing data was adopted, especially during this period. The change in the visible region's spectral reflectance of water in part of the river has been analyzed using the Landsat 8 OLI multispectral remote sensing data at Tigris River, Salah al-Din province (Bayji / near the refinery), Iraq. It was found that the green and red bands are most sensitive and can be used to estimate turbidity. Furthermore, the temporal variation in turbidity was a
... Show More
Drug consultation is an important part of pharmaceutical care. mobile phone call or text message can serve as an easy, effective, and implementable alternative to improving medication adherence and clinical outcomes by providing the information needed significantly for people with chronic illnesses like diabetes and hypertension particularly during pandemics like COVID-19 pandemic.
ABSTRACT Objective: Cardiovascular diseases are the first ranked cause of death worldwide. Adhering to health promoting lifestyle behaviors will maintain an individual’s cardiovascular health and decrease the risk of cardiovascular diseases. Methods: In this descriptive study, 150 nursing faculty were surveyed via a non-probability (purposive) sampling method to assess their adherence to health promoting lifestyle in order to know the risk of cardiovascular diseases. The Arabic version of Health-Promoting Lifestyle Profile II (HPLP-II) was used to achieve this goal. Results: Seventy-two nursing faculty completed the survey. The results indicated that the study sample had moderate level of health promotion based on Health-Promot
... Show More