Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing different MCDM approaches has been raised based on different perspectives; however, the latest one, namely, the fuzzy decision by opinion score method that was produced in 2020, has efficiently been able to solve some existing issues that other methods could not manage to solve. because of the multiple criteria decision-making problem and because some criteria have a conflict problem. The methodology of this research was divided into two main stages. The first stage related to identifying the decision matrix used eight different ML methods on chest X-ray (CXR) images and extracted a new decision matrix so as to assess the ML methods. The second stage related to FDOSM was utilized to solve the multiple criteria decision-making problems. The results of this research are as follows: (1) The individual benchmarking results of three decision makers are nearly identical; however, among all the used ML methods, neural networks (NN) achieved the best results. (2) The results of the benchmarking group are comparable, and the neural network machine learning method is the best among the used methods. (3) The final rank is more logical and closest to the decision-makers' opinion. (4) Significant differences among groups' scores are shown by our validation results, which indicate the authenticity of our results. Finally, this research presents many benefits, especially for hospitals and medical clinics, with a view to speeding up the diagnosis of patients suffering from COVID-19 using the best machine learning method.
In this work, PAni nanofibers (NFs) are successfully synthesized via hydrothermal method. The structural, surface morphological, optical, electrical and H2S gas sensing properties have been investigated for PAni thin films deposited by spin coating technique. The XRD pattern reveals crystalline nature of PAni NFs with crystallite size of 9.2 nm. The SEM image of Polyaniline clearly indicates that the polymer possesses nanofiber like structure. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc’s equation. Intense hotoluminescence (PL) peaks at 309, 340 and 605 nm are observed. The electrical properties such as D.C. conductivity and Hall effect have been studied wher
... Show MoreAccurate detection of Electro Cardio Graphic (ECG) features is an important demand for medical purposes, therefore an accurate algorithm is required to detect these features. This paper proposes an approach to classify the cardiac arrhythmia from a normal ECG signal based on wavelet decomposition and ID3 classification algorithm. First, ECG signals are denoised using the Discrete Wavelet Transform (DWT) and the second step is extract the ECG features from the processed signal. Interactive Dichotomizer 3 (ID3) algorithm is applied to classify the different arrhythmias including normal case. Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database is used to evaluate the ID3 algorithm. The experimental resul
... Show MoreFusion can be described as the process of integrating information resulting from the collection of two or more images from different sources to form a single integrated image. This image will be more productive, informative, descriptive and qualitative as compared to original input images or individual images. Fusion technology in medical images is useful for the purpose of diagnosing disease and robot surgery for physicians. This paper describes different techniques for the fusion of medical images and their quality studies based on quantitative statistical analysis by studying the statistical characteristics of the image targets in the region of the edges and studying the differences between the classes in the image and the calculation
... Show MoreThe consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More