Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing different MCDM approaches has been raised based on different perspectives; however, the latest one, namely, the fuzzy decision by opinion score method that was produced in 2020, has efficiently been able to solve some existing issues that other methods could not manage to solve. because of the multiple criteria decision-making problem and because some criteria have a conflict problem. The methodology of this research was divided into two main stages. The first stage related to identifying the decision matrix used eight different ML methods on chest X-ray (CXR) images and extracted a new decision matrix so as to assess the ML methods. The second stage related to FDOSM was utilized to solve the multiple criteria decision-making problems. The results of this research are as follows: (1) The individual benchmarking results of three decision makers are nearly identical; however, among all the used ML methods, neural networks (NN) achieved the best results. (2) The results of the benchmarking group are comparable, and the neural network machine learning method is the best among the used methods. (3) The final rank is more logical and closest to the decision-makers' opinion. (4) Significant differences among groups' scores are shown by our validation results, which indicate the authenticity of our results. Finally, this research presents many benefits, especially for hospitals and medical clinics, with a view to speeding up the diagnosis of patients suffering from COVID-19 using the best machine learning method.
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
The set of all (n×n) non-singular matrices over the field F. And this set forms a group under the operation of matrix multiplication. This group is called the general linear group of dimension over the field F, denoted by . The determinant of these matrices is a homomorphism from into F* and the kernel of this homomorphism was the special linear group and denoted by Thus is the subgroup of which contains all matrices of determinant one.
The rationally valued characters of the rational representations are written as a linear combination of the induced characters for the groups discussed in this paper. We find the Artin indicator for this group after studying the rationally valued characters of the rational
... Show MoreBACKGROUND: Coronavirus current pandemic (COVID-19) is the striking subject worldwide hitting countries in an unexplained non-universal pattern. Bacillus Calmette–Guérin (BCG) vaccine was an adopted recent justification depending on its non-specific immune activation properties. Still the problem of post-vaccine short duration of protection needs to be solved. The same protective mechanism was identified in active or latent tuberculosis (TB). For each single patient of active TB, there are about nine cases of asymptomatic latent TB apparently normal individuals living within the community without restrictions carrying benefits of immune activation and involved in re-infection cycles in an excellent example of repeated immunity tr
... Show MoreThe analysis of COVID-19 data in Iraq is carried out. Data includes daily cases and deaths since the outbreak of the pandemic in Iraq on February 2020 until the 28th of June 2022. This is done by fitting some distributions to the data in order to find out the most appropriate distribution fit to both daily cases and deaths due to the COVID-19 pandemic. The statistical analysis includes estimation of the parameters, the goodness of fit tests and illustrative probability plots. It was found that the generalized extreme value and the generalized Pareto distributions may provide a good fit for the data for both daily cases and deaths. However, they were rejected by the goodness of fit test statistics due to the high variability of the data.<
... Show MoreBy March 2020, a pandemic had been emerged Corona Virus Infection in 2019 (COVID-19), which was triggered through the sensitive pulmonary syndrome (SARS disease corona virus- 2 (SARS COV-2). Overall precise path physiology of SARS COV-2 still unknown, as does the involvement of every element of the acute or adaptable immunity systems. Additionally, evidence from additional corona virus groups, including SARS COV as well as the Middle East pulmonary disease, besides that, fresh discoveries might help researchers fully comprehend SARS CoV-2. Toll-like receptors (TLRs) serve a critical part in both detection of viral particles as well as the stimulation of the body's immune response. When TLR systems are activated, pro-inflammatory cy
... Show MoreThere is limited data and evidence about the effects of COVID-19 on Maternal health, especially when new information is emerging daily, through pregnancy, child birth and post natal period, women are vulnerable to have the infection, this article, aimed to show the suitable measures that should be applied for women at reproductive age who are suspected /confirmed with COVID -19 infection,
During pregnancy it is advisable to continue the antenatal care schedule, although reducing face to face visit is recommended (unless the pregnant condition required that ),and prioritize ANC at health facilities for high-risk pregnancy and during second half of pregnancy with adequate infection prevention control measures.
Regardi
... Show MoreFactor analysis is distinguished by its ability to shorten and arrange many variables in a small number of linear components. In this research, we will study the essential variables that affect the Coronavirus disease 2019 (COVID-19), which is supposed to contribute to the diagnosis of each patient group based on linear measurements of the disease and determine the method of treatment with application data for (600) patients registered in General AL-KARAMA Hospital in Baghdad from 1/4/2020 to 15/7/2020. The explanation of the variances from the total variance of each factor separately was obtained with six elements, which together explained 69.266% of the measure's variability. The most important variable are cough, idleness, fever, headach
... Show MoreThe Coronavirus disease 2019 (COVID-19) pandemic is caused by the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first identified in December 2019 in Wuhan, China. The outbreak was declared as a Public Health Emergency of International Concern in January 2020 and a pandemic in March 2020. In this study, a complete statistical analysis for SARS-CoV-2 pandemic in entire Iraq, as well as for each governorate separately, is performed for the first time. The study covers a period that starts from the beginning of the pandemic, in the 24th of February 2020, until the 16th of July 2020. It was clear that, although the average number of the reported infection cases was low during Feb
... Show MoreThe basic goal of this research is to utilize an analytical method which is called the Modified Iterative Method in order to gain an approximate analytic solution to the Sine-Gordon equation. The suggested method is the amalgamation of the iterative method and a well-known technique, namely the Adomian decomposition method. A method minimizes the computational size, averts round-off errors, transformation and linearization, or takes some restrictive assumptions. Several examples are chosen to show the importance and effectiveness of the proposed method. In addition, a modified iterative method gives faster and easier solutions than other methods. These solutions are accurate and in agreement with the series
... Show More