The Euphrates River Basin in Iraq suffers from climate changes represented by the scarcity of precipitation and the increase in temperatures, which is directly reflected in the discharge rates and the increase in total dissolved solids, and consequently, the increase in the dissolved loads in the river. Four measurement stations (Haditha, Ramadi, Fallujah, and Al-Hindiya) in the upper reach of the Euphrates River were investigated. Available data were analyzed from 1970 to 2020 related to precipitation (mm) and temperatures (°C). The results showed a clear decrease in precipitation rates over the years, while a clear increase in air temperature rates was observed. The discharge rates decreased temporally and spatially downstream as follows: 502, 383.7, 382.1, and 211.8 m³/s in Haditha, Ramadi, Fallujah, and Al-Hindiya, respectively. The average total dissolved solids (ppm) from 2005 to 2020 shows a gradual increase downstream, 698.8, 764.8, 833, and 922.3 ppm. The dissolution load classification curves for 2005 to 2020 show an increase in the downstream dissolved loads of 0.781, 0.786, 0.927, and 0.944 million tons/month in Haditha, Ramadi, Fallujah, and Al-Hindiya, respectively. It reflects the increase in the dissolution process of basin materials cumulatively downstream. It is recommended that careful management of the transmission of pollutants of agricultural and anthropogenic activities outputs into the river without any treatments for the downstream reaches will be required.
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show More