This paper aims to find out if FOXP-3 was expressed in samples from Iraqi cervical cancer patients. Expression of FOXP-3 was detected in 55 cervical tissue samples by immunohistochemistry. Since thirty-five cases of aggressive cervical cancer were included, along with 20 normal samples used as controls. The nucleus and cytoplasm levels of FOXP-3 were counted, considering the ratio of positive cells and intensity. FOXP3 cytoplasmic staining was found in 27 out of 35 cases. Only 11 out of 35 samples displayed nuclear lymphocyte staining. Furthermore, four samples expressed this marker in both the nuclear and cytoplasm of the cervical cells. There is a highly significant difference in FOXP3 expression in the cytoplasm of malignant cells and lymphocytes compared to normal samples. Seven samples out of 11 cells correlated with lymph vascular invasion. These results show that tissue positive FOXP-3 possesses a possible diagnostic marker for Iraqi cervical cancer. FOXP3 is significantly expressed in cancer cells, and lymphocyte infiltrates [T-reg] compared to normal.
This study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreThe automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,
In this study, the optimum conditions for COD removal from petroleum refinery wastewater by using a combined electrocoagulation- electro-oxidation system were attained by Taguchi method. An orthogonal array experimental design (L18) which is of four controllable parameters including NaCl concentration, C.D. (current density), PH, and time (time of electrolysis) was employed. Chemical oxygen demand (COD) removal percentage was considered as the quality characteristics to be enhanced. Also, the value of turbidity and TDS (total dissolved solid) were estimated. The optimum levels of the studied parameters were determined precisely by implementing S/N analysis and analysis of variance (ANOVA). The optimum conditions were found to be NaCl = 2.5
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreCryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms
... Show MoreDatabase is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreCorrosion- induced damage in reinforced concrete structure such as bridges, parking garages, and buildings, and the related cost for maintaining them in a serviceable condition, is a source of major concern for the owners of these structures.
Fly ash produced from south Baghdad power plant with different concentrations (20, 25 and 30) % by weight from the cement ratio were used as a corrosion inhibitor as a weight ratio from the cement content.
The concrete batch ratio under study was (1:1.5:3) cement, sand and gravel respectively which is used in Iraq. All the raw materials used were locally manufactured.
Concrete slabs (250x250x70) mm dimensions were casted, using Poly-wood molds. Two steel bars were embedded in the central po
Face recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o