This article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurements have increasingly been incorporated into high school and university laboratories. Such modernized science and engineering experimentations also provide a ubiquitous learning environment during the pandemic period.
This research represents a reflection seismic study (structural and stratigraphic) for a (852) km2 area located in the south of Iraq within the administrative border of the province of Al-Muthanna and Qadisiyah province ,by using 2-D seismic data from Oil Exploration company three main seismic reflectors are picked, these are (Zubair and Yamama) Formations which they deposited during the Cretaceous age , and (Gotnia) Formation which deposited during Jurassic age .Structural maps of Formations are prepared to obtain the location and direction of the sedimentary basin and shoreline ,time, velocity and depth maps are drawn depending on the structural interpretation of the picked reflectors and show several structural feature as nose structu
... Show MoreThis research considers the preservation of environment through recycling old toys. This is achieved by transforming the old toys into educational clothing accessories for kindergarten stages. The research methodology adapts both descriptive and applied approaches. The research questionnaire targeted a sample of 35 teachers to collect information about the waste toys in kindergarten. Also, another sample of 30 teachers and mothers were targeted to measure the suitability of the clothing designs for the early childhood stages. The results shows that both teachers and mothers were well satisfied with clothing accessories designed with the toys waste. This concept contributes to limiting the pollution caused by toys and could save time, eff
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreAbstract
In this research will be treated with a healthy phenomenon has a significant impact on different age groups in the community, but a phenomenon tonsillitis where they will be first Tawfiq model slope self moving averages seasonal ARMA Seasonal through systematic Xbox Cengnzla counter with rheumatoid tonsils in the city of Mosul, and for the period 2004-2009 with prediction of these numbers coming twelve months, has found that the specimen is the best representation of the data model is the phenomenon SARMA (1,1) * (2,1) 12 from the other side and explanatory variables using a maximum temperature and minimum temperature, sol
The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
The present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (
In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).
In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show More