This article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurements have increasingly been incorporated into high school and university laboratories. Such modernized science and engineering experimentations also provide a ubiquitous learning environment during the pandemic period.
The healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreResearch in the field of English language as a foreign language (EFL) has been consistently highlighted the need for communicative competence skills among students. Accompanied by the validated positive impact of technologies on students’ skills’, this study aims to explore the strategies used by EFL students in enhancing their communicative competence using digital platforms and identify the factors of developing communicative competence using digital platforms (linguistic factors, environmental factors, psychological factors, and university-related factors). The mixed-method research design was utilized to obtain data from Iraqi undergraduate EFL students. The study was conducted in the Iraqi University in Baghdad Iraq. EFL undergradu
... Show MoreHemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst
The aim of the research is to assess the quality of the university accounting education system in Iraq. The researcher relied on the opinions of a sample of academics specialized in this field by preparing a checklist focusing on a set of axes that would affect the quality of accounting education in the Iraqi environment.
The most prominent finding of the research is that the quality of accounting education in Iraqi universities is medium and differs from one university to another in some quality components. In addition, the prescribed curricula and study plans applied in the accounting departments do not live up to the required level, as the largest proportion of those curricula are theoretically d
... Show MoreThe present study aimed to identify the availability of the National Council of Teachers of Mathematics (NCTM) standards in the content of mathematics textbooks at the basic education stage in the Sultanate of Oman. The study used the descriptive-analytical approach, adopting the method of content analysis through using a content analysis tool that included (43) indicators distributed on the four NCTM standards related to the field of geometry, after verifying their validity and reliability. The study population consisted of mathematics textbooks (first and second semesters) for ninth-grade students in the Sultanate of Oman in the academic year 2018/2019, while the sample consisted of Geometry units in the content of those books, which a
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreThe application of novel core-shell nanostructure composed of Cu, Ag, Au/NiO to improve the sensitivity of pure NiO to H2S gas sensors is demonstrated in this study. The growth of Cu, Ag, Au/NiO core-shell nanostructure is performed by chemical reaction of NiO on metal nanoparticle (Cu, Ag and Au) that prepared by pulsed laser ablation (PLA( technique. This is to form the homogeneous structure of the sensors investigated in this report to assess their sensitivity in terms of H2S detection. These novel H2S gas sensors were evaluated at operating temperatures of 25 °C, 100 °C and at 150 °C. The result reveals the Cu, Ag, Au/NiO core-shell nanostructure present a good sensitivity at low working temperatures compared by pure NiO nanoparti
... Show More