This article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurements have increasingly been incorporated into high school and university laboratories. Such modernized science and engineering experimentations also provide a ubiquitous learning environment during the pandemic period.
Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreA description of the implementation of integrated practical work in a remote laboratory was presented in this paper. The student, in real time, can access an online web page in order to manipulate a practical work of digital electronics. This work is based on the use of an embedded system PcDuino. The hardware architecture and software solutions are described, as well as the supervision tool that allows the student to follow changes in the output states of the Practical Work remotely.
In this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreThe healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreResearch in the field of English language as a foreign language (EFL) has been consistently highlighted the need for communicative competence skills among students. Accompanied by the validated positive impact of technologies on students’ skills’, this study aims to explore the strategies used by EFL students in enhancing their communicative competence using digital platforms and identify the factors of developing communicative competence using digital platforms (linguistic factors, environmental factors, psychological factors, and university-related factors). The mixed-method research design was utilized to obtain data from Iraqi undergraduate EFL students. The study was conducted in the Iraqi University in Baghdad Iraq. EFL undergradu
... Show MoreHemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst
The aim of the research is to assess the quality of the university accounting education system in Iraq. The researcher relied on the opinions of a sample of academics specialized in this field by preparing a checklist focusing on a set of axes that would affect the quality of accounting education in the Iraqi environment.
The most prominent finding of the research is that the quality of accounting education in Iraqi universities is medium and differs from one university to another in some quality components. In addition, the prescribed curricula and study plans applied in the accounting departments do not live up to the required level, as the largest proportion of those curricula are theoretically d
... Show More