This article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurements have increasingly been incorporated into high school and university laboratories. Such modernized science and engineering experimentations also provide a ubiquitous learning environment during the pandemic period.
ABSTRACT
The study aims to identify the level of health services provided in private suites to government hospitals from the perspective of the recipi
... Show More
The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.
Among the problems that appear as a result of the use of some statistical methods I
... Show MoreSamples of the root nodules were collected to isolate different species of the genus Rhizobium from several leguminous plants; Trigonella foenum-graecum, Medicago sativa, Lens culinaris, Vigna mungo, Vicia faba, Phaseolus vulgaris, and Cicer arietinum, and based on their morphological, cultural, and biochemical characteristics, in addition to the identification of each isolate at the species level by amplified polymerase chain reaction (PCR) and using the sequencing of the nitrogenous bases of the 16S rRNA gene, it was identified as Sinrhizobium meliloti, Sinrhizobium meliloti, Bradyrhizobium elkanii, Rhizobium leguminosarium biovar viciae, Rhizobium leguminosarium biovar phaseoli and Mesorh
... Show MoreThis paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreThe phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wi