Preferred Language
Articles
/
ijs-5699
Network Traffic Prediction Based on Boosting Learning
...Show More Authors

Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traffic patterns that can be categorized based on statistical characteristics. These methods help determine the type of traffic and protect user privacy at the same time. To classify encrypted traffic from end to end, this paper proposes using (XGboost) algorithms, finding the highest parameters using Bayesian optimization, and comparing the proposed model with machine learning algorithms (Nearest Neighbor, Logistic Regression, Decision Trees, Naive Bayes, Multilayer Neural Networks) to classify traffic from end to end. Network traffic has two classifications: whether the traffic is encrypted or not, and the target application. The research results showed the possibility of classifying dual and multiple traffic with high accuracy. The proposed model has a higher classification accuracy than the other models, and finding the optimal parameters increases the model accuracy.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 02 2012
Journal Name
Journal Of Engineering
3-D Object Recognition using Multi-Wavelet and Neural Network
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com

... Show More
View Publication
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
3-D OBJECT RECOGNITION USING MULTI-WAVELET AND NEURAL NETWORK
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2013
Journal Name
International Journal Of Electrical, Electronics And Telecommunication Engineering
Performance Analysis of xPON Network for Different Queuing Models
...Show More Authors

Passive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
SYNTHESIS OF NEW LEVOFLOXACIN SELECTIVE MEMBRANE SENSOR BASED ON MOLECULARLY IMPRINTED POLYMERS.: SYNTHESIS OF NEW LEVOFLOXACIN SELECTIVE MEMBRANE SENSOR BASED ON MOLECULARLY IMPRINTED POLYMERS.
...Show More Authors

Two molecular imprinted polymer (MIP) membranes for Levofloxacin (LEV) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of styrene (STY) as monomer, N,N methylene di acrylamide as a cross linker ,benzoyl peroxide (BPO) as an initiator and levofloxacin as a template. Di methyl adepate (DMA) and acetophenone (AOPH) were used as plasticizers , the molecular imprinted membranes and the non molecular imprinted membranes were prepared.  The slopes and detection limits of the liquid electrodes ranged from -21.96 – -19.38 mV/decade and 2×10-4M- 4×10-4M, and Its response time was around 1 minute, respectively. The liquid  electrodes were packed with 0.1 M standar

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Dual Stages of Speech Enhancement Algorithm Based on Super Gaussian Speech Models
...Show More Authors

Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression alg

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Image Splicing Detection Based on Discrete Wavelet Transform and co-occurrence Matrix
...Show More Authors

    In this paper a method  to determine whether an image is forged (spliced) or not is presented. The proposed method is based on  a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Propose an Efficient Face Recognition Model in WSN Based on Zak Transform
...Show More Authors

The need for a flexible and cost effective biometric security system is the inspired of this paper. Face recognition is a good contactless biometric and it is suitable and applicable for Wireless Sensor Network (WSN). Image processing and image communication is a challenges task in WSN due to the heavy processing and communication that reduce the life time of the network. This paper proposed a face recognition algorithm on WSN depending on the principles of the unique algorithm that hold the capacity of the network to the sink node and compress the communication data to 89.5%. An efficient hybrid method is introduced based upon the advantage of Zak transform to offprint the farthest different features of the face and Eigen face method to

... Show More
View Publication Preview PDF