Foreground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high details.
In this present paper, an experimental study of some plasma characteristics in dielectric barrier discharge (DBD) system using several variables, such as different frequencies and using two different electrodes metals(aluminium (Al) and copper (Cu)), is represented. The discharge plasma was produced by an AC power supply source of 6 and 7 kHz frequencies for the nitrogen gas spectrum and for two different electrodes metals(Al and Cu). Optical emission spectrometer was used to study plasma properties (such as electron temperature ( ), electron number density ( ), Debye length ( ), and plasma frequency ( )). In addition, images were analysed for the plasma emission intensity at atmospheric air pressure.
The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256) in our research, compressed them by using MLP for each
... Show MoreThe main aim of this paper is to use the notion which was introduced in [1], to offered new classes of separation axioms in ideal spaces. So, we offered new type of notions of convergence in ideal spaces via the set. Relations among several types of separation axioms that offered were explained.