Preferred Language
Articles
/
ijs-5674
Brain MR Images Classification for Alzheimer’s Disease
...Show More Authors

    Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification function. Weights were used to test the proposed method's recognition capacity, and the network was trained with a sample training set. As a result, this study offeres a new method for identifying Alzheimer's disease utilizing automated categorization. In tests, it performed admirably With 98.46% accuracy achieved for AD and NC studied classes when combining Gray Level Co-occurrence Matrix (GLCM) features with a DBN.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Intelligent H2/H∞ Robust Control of an Active Magnetic Bearings System
...Show More Authors

Abstract

Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance.  This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS).  Simulatio

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Educational And Psychological Researches
The relationship between critical thinking, epistemological beliefs, and learning strategies with the students’ academic performance
...Show More Authors

The present study was conducted to investigate the relationship between critical thinking, epistemological beliefs, and learning strategies with the academic performance of high school first-grade male and female students in Yazd. For this purpose, from among all first-grade students, as many as 250 students (130 females and 120 males) were selected by using multistage cluster sampling. The data needed were then collected through using California Critical Thinking Skills Test, Schommer's Epistemological Beliefs Questionnaire, Biggs’ Revised Two Factor Study Process Questionnaire. The findings indicated that there is a positive significant relationship between critical thinking and academic performance and achievement. Moreover, four fa

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 15 2014
Journal Name
International Journal Of Advanced Research
A survey/ Development of Passive Optical Access Networks Technologies
...Show More Authors

The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many ad

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Defence Technology
A novel facial emotion recognition scheme based on graph mining
...Show More Authors

Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T

... Show More
View Publication Preview PDF
Scopus (37)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Prediction of Well Logs Data and Estimation of Petrophysical Parameters of Mishrif Formation, Nasiriya Field, South of Iraq Using Artificial Neural Network (ANN)
...Show More Authors

    Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Predicting Municipal Sewage Effluent Quality Index Using Mathematical Models In The Al-Rustamiya Sewage Treatment Plant
...Show More Authors

Efficient management of treated sewage effluents protects the environment and reuse of municipal, industrial, agricultural and recreational as compensation for water shortages as a second source of water. This study was conducted to investigate the overall performance and evaluate the effluent quality from Al- Rustamiya sewage treatment plant (STP), Baghdad, Iraq by determining the effluent quality index (EQI). This assessment included daily records of major influent and effluent sewage parameters that were obtained from the municipal sewage plant laboratory recorded from January 2011 to December 2018. The result showed that the treated sewage effluent quality from STP was within the Iraqi quality standards (IQS) for disposal and t

... Show More
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Fault Location of Doukan-Erbil 132kv Double Transmission Lines Using Artificial Neural Network ANN
...Show More Authors

Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 02 2024
Journal Name
Al-iraqia Journal Of Scientific Engineering Research
Visible Light Communication System Integrating Road Signs with the Vehicle Network Grid
...Show More Authors

View Publication
Crossref
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
New Versions of Liu-type Estimator in Weighted and non-weighted Mixed Regression Model
...Show More Authors

This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref