Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification function. Weights were used to test the proposed method's recognition capacity, and the network was trained with a sample training set. As a result, this study offeres a new method for identifying Alzheimer's disease utilizing automated categorization. In tests, it performed admirably With 98.46% accuracy achieved for AD and NC studied classes when combining Gray Level Co-occurrence Matrix (GLCM) features with a DBN.
Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show MoreThe present work aimed to study the effect of Grave's disease on the different tissues and organs of the body by using Wayne Thyrotoxicosis Diagnostic Index (WTDI) and Basel Metabolic Index (BMI). To reach such aim, (35) patients were involved (25 females and 10 males). A control group of (15) healthy individuals (10 females and 5 males) was selected for comparison , as well as , the following: 1- Wayne Thyrotoxicosis Diagnostic Index (WTDI) applied on patient group and control group under the supervision of specialist medical team , this index include (19) sign and symptom , the appearance of one of them may be lead to the others. The sings and symptoms of the index appear only on the patients. There is no Significant di
... Show MoreThe coronavirus-pandemic has a major impact on women's-mental and physical-health. Polycystic-ovary-syndrome (PCOS) has a high-predisposition to many cardiometabolic-risk factors that increase susceptibility to severe complications of COVID-19 and also exhibit an increased likelihood of subfertility. The study includes the extent of the effect of COVID-19-virus on renin-levels, glutathione-s-transferase-activity and other biochemical parameters in PCOS-women. The study included 120 samples of ladies that involved: 80 PCOS-patients, and 40 healthy-ladies. Both main groups were divided into subgroups based on COVID-19 infected or not. Blood-samples were collected from PCOS-patients in Kamal-Al-Samara Hospital, at the period between Decembe
... Show MoreBackground: Tumor necrosis factor-alpha (TNF-α) and interleukins play important roles in the pathogenesis of rheumatoid arthritis (RA). Genetic research has been employed to find many of the missing connections between genetic risk variations and causal genetic components. Objective: The goal of this study is to look at the genetic variations of TNF-α and interleukins in Iraqi RA patients and see how they relate to disease severity or response to biological therapy. Method: Using specific keywords, the authors conducted a systematic and comprehensive search to identify relevant Iraqi studies examining the genetic variations of TNF-α and interleukins in Iraqi RA patients and how they relate to disease severity or response to biolo
... Show MoreChronic Kidney Disease (CKD) is a public health problem and many studies support the link between kidney dysfunction and cardiovascular events. Aldosterone has been shown for decades that a plasma aldosterone concentration is elevated in CKD. Whilst, Osteoprotegerin (OPG), after its capacity to protect bone, also osteoprotegerin is elevated in patients with chronic kidney disease (CKD), where it could predict the deterioration of kidney function, cardiovascular, vascular events and all-cause mortality. On the other hand, fibroblast growth factors (FGFs), in patients with CKD, its levels seem to increase progressively as kidney function worsens. The aim of the present study is to assess the correlations between serum osteoprotegerin
... Show MoreThis study was carried out in Artificial Insemination Center of Iraq to revealed FMD disease effect on some seminal attributer parameters of 14 imported Holstein bulls divided to three groups according to different reproductive efficiency (four High, five medium and five weak). Results showed that FMD disease had significant (P < 0.05) adverse effect on most seminal attributer parameters, mass, individual motility and sperm concentration / ml during post disease in first of two, four, all months of high, medium and weak semen quality bulls respectively .but semen volume didn’t influenced significantly with this disease. So semen collection should be suspended until resume normal fertility of sperm, after two, four month of high and
... Show MoreForeign Object Debris (FOD) is defined as one of the major problems in the airline maintenance industry, reducing the levels of safety. A foreign object which may result in causing serious damage to an airplane, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplanes flying. FOD detection systems in the past lacked an effective method for automatic material recognition as well as high speed and accuracy in detecting materials. This paper proposes the FOD model using a variety of feature extraction approaches like Gray-level Co-occurrence Matrix (GLCM) and Linear Discriminant Analysis (LDA) to extract features and Deep Learning (DL) for classifi
... Show MoreBackground: Helicobacter pylori are important gastrointestinal pathogen associated with gastritis, peptic ulcers, and an increased risk of gastric carcinoma. There are several popular methods for detection of H. pylori (invasive and non-invasive methods) each having its own advantages, disadvantages, and limitations, and by using PCR technique the ability to detect H. pylori in saliva samples offers a potential for an alternative test for detection of this microorganism. Materials and methods: The study sample consists of fifty participants of both genders, who undergo Oesophageo-gastrodudenoscopy at the Gastroenterology Department of Al-Kindy Teaching Hospital Baghdad/ Iraq, during five months period from January 2014 to May 2014. They we
... Show MoreThe objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. This work modernize the feedforward neural network, so the secret message will be encrypted by unsupervised neural network method to get the cipher text that can be decrypted using the same network to get the original text. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding lengths. In this work, the key is the final weights
... Show More