Preferred Language
Articles
/
ijs-5647
Secure Location Privacy Transmitting Information on Cellular Networks
...Show More Authors

      As smartphones incorporate location data, there is a growing concern about location  privacy as smartphone technologies advance. Using a remote server, the mobile applications are able to capture the current location coordinates at any time and store them. The client awards authorization to an outsider. The outsider can gain admittance to area information on the worker by JSON Web Token (JWT). Protection is giving cover to clients, access control, and secure information stockpiling. Encryption guarantees the security of the location area on the remote server using the Rivest Shamir Adleman (RSA) algorithm. This paper introduced two utilizations of cell phones (tokens, and location). The principal application can give area information by means of the geographic position method of these gadgets. Every cell phone can create a token. The token holds secret keys got from versatile fixed identifiers for the most part of the Social Security Number (SSN) for each SIM (Endorser Personality Module) Chronic Number) and IMEI (Global Portable Hardware Character) by RSA calculation. The token is going through the short and informative administration of Short Message Service (SMS) from the client to the outsider. Information is scrambled before being stored on a faraway worker. The actual worker can't comprehend the area’s information. The third-party cannot follow the area if the client utilizes distinctive mystery keys. The client’s data and area information are saved by the various workers. The proposed application offers a mysterious sharing instrument that uses token verification to grant clients access to scrambled area data and provides encryption data in a remote server with an authentication token, achieving mutual authentication on each mobile device and user concealment.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Estimating Angle of Arrival (AOA) for Wideband Signal by Sensor Delay Line (SDL) and Tapped Delay Line (TDL) Processors
...Show More Authors

Angle of arrival (AOA) estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM), satellite, military applications and spread spectrum (frequency hopping and direct sequence). Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line) (TDL). Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M) array elements is used. A transversal filter (TDL) in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The propo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Iraqi Journal Of Science
Improving Extractive Multi-Document Text Summarization Through Multi-Objective Optimization
...Show More Authors

Multi-document summarization is an optimization problem demanding optimization of more than one objective function simultaneously. The proposed work regards balancing of the two significant objectives: content coverage and diversity when generating summaries from a collection of text documents.

     Any automatic text summarization system has the challenge of producing high quality summary. Despite the existing efforts on designing and evaluating the performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. In this work, the design of

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
An Artificial Intelligence Algorithm to Optimize the Classification of the Hepatitis Type
...Show More Authors

Hepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Efficient Algorithm for Solving Fuzzy Singularly Perturbed Volterra Integro-Differential Equation
...Show More Authors

     In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Artificial Neural Network for TIFF Image Compression
...Show More Authors

The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256)  in our research, compressed them by using MLP for each

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Extractive Multi-Document Text Summarization Using Multi-Objective Evolutionary Algorithm Based Model
...Show More Authors

Automatic document summarization technology is evolving and may offer a solution to the problem of information overload. Multi-document summarization is an optimization problem demanding optimizing more than one objective function concurrently. The proposed work considers a balance of two significant objectives: content coverage and diversity while generating a summary from a collection of text documents. Despite the large efforts introduced from several researchers for designing and evaluating performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. The design of gener

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Cluster Analysis by Using Nonparametric Cubic B-Spline Modeling for Longitudinal Data
...Show More Authors

Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.

In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.

The longitudinal balanced data profile was compiled into subgroup

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Nonparametric Binary Logistic Regression
...Show More Authors

In this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro

... Show More
View Publication Preview PDF
Crossref