The study area is located in the East of Missan governorate, southeast of Iraq between (32°'29.52" – 32°37'30") latitude and (46°46'21.16" – 47°58'53.52")longitude. It encompasses an area of (1858 ) with elevation ranges from 8 to 165m. Soil is a natural body that exists as part of the pedosphere and which performs four important functions. It is a medium for plant growth and a means of water storage, supply and purification. The spatial mapping of soil usually involves delineating soil types that have identifiable characteristics. The delineation is based on many factors such as geomorphologic origin and conditions under which the soil is formed. Hydrologic soil group (HSG) refers to the classification of soils based on their runoff , producing characteristics and their infiltration rate. Soils are assigned to 4 hydrologic groups namely Group A - high infiltration rate when wet, low runoff potential, Group B - moderate infiltration, low runoff potential, Group C - slow infiltration, higher runoff potential, and Group D - very slow infiltration rate, highest runoff potential. According to the USDA soil classification system, four hydrological soil groups are recognized: A, B, C, and D with 19%, 48%, 32%, and 1%, respectively, the high percentage extension of moderately infiltration group (B and C).
Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use
... Show MoreGypseous soils are considered one of the most problematic soils. The skirted foundation is an alternative technology that works to improve the bearing capacity and reduce settlement. This paper investigates the use of square skirted foundations resting on gypseous soil subjected to concentric and eccentric vertical load with eccentricity values of 4, 8, and 17 mm in 16 experimental model tests. To obtain the results by using this type of foundation, a small-scale physical model was designed to obtain the load–settlement behavior of the square skirted foundation; the dimension of the square footing is 100 mm × 100 mm with 1 mm thickness, the skirt depth (
One of the main environmental problems which affect extensively the areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Landsat satellite (TM & ETM+) images have been analyzed to study soil pollution (Exacerbation of salinity in the soil without the use of abandoned agricultural for a long time) at west of Baghdad city of Iraqi country for the years 1990, 2001 & 2007. All of the th
... Show MoreSoil stabilization with stone powder is a good solution for the construction of subgrade for road way and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. Stone powder often has a unique composition which justifies the need for research to study the feasibility of using this stone powder type for ground improvement applications. This paper presents results from a comprehensive laboratory study carried out to investigate the feasibility of using stone powder for improvement of engineering properties of clays.
The stone powder contains bassanite (CaSO4. ½ H
... Show MoreThe placement of buildings and structures on/or adjacent to slopes is possible, but this poses a danger to the structure due to failures that occur in slopes. Therefore, a solution or improvement should be determined for these issues of the collapse of the structure as a result of the failure of the slopes. A laboratory model has been built to test the impact of some variables on the bearing capacity factor. The variables include the magnitude of static axial load applied at the center of footing, the depth of embedment, the spacing between geogrid reinforcement layer and the numbering of the geogrid sheet under the footing, the inclination angle of slope clayey soil (β), the spacing between the footing's edge and the slope's end (b/H). Th
... Show MoreCyanobacteria are prokaryotic photosynthetic communities which are used in biofertilization of many plants especially rice plant. Cyanobacteria play a vital role to increase the plant's ability for salinity tolerance. Salinity is a worldwide problem which affects the growth and productivity of crops. In this work three cyanobacteria strains (Nostoc calcicola, Anabaena variabilis, and Nostoc linkia) were isolated from saline soil at Kafr El-Sheikh Governorate; North Egypt. The propagated cyanobacteria strains were used to withstand salinity of the soil and increase rice plant growth (Giza 178). The length of roots and shoot seedlings was measured for seven and forty days of cultivation, respectively. The results of this investigation showed
... Show MoreBuilding natural period, T, is a key character in building response for wind and seismic induced forces. In design practice, the period, T, is either estimated from empirical relations proposed by the design codes or determined from analytical or numerical models. The effect of the soil-structure interaction is usually neglected in the design practice and analysis models. This paper uses a sophisticated finite element simulation to investigate the effect of soil-structure modeling on the fundamental period of RC buildings subjected to wind and seismic induced forces. A typical interior building frame has been imitated using the frame element for beams and columns with constrains to mo