In this article, we introduce a new type of soft spaces namely, soft spaces as a generalization of soft paces. Also, we study the weak forms of soft spaces, namely, soft spaces, soft spaces, soft space, and soft spaces. The characterizations and fundamental properties related to these types of soft spaces and the relationships among them are also discussed.
In this paper, we introduce and study new types of soft open sets and soft closed
sets in soft bitopological spaces (X,~ ,~ ,E) 1 2 , namely, (1,2)*-maximal soft open
sets, (1,2)*-maximal soft (1,2)*-pre-open sets, semi (1,2)*-maximal soft (1,2)*-preopen
sets, (1,2)*-maximal soft closed sets, (1,2)*-maximal soft (1,2)*-pre-closed
sets, (1,2)*-minimal soft open sets, (1,2)*-minimal soft (1,2)*-pre-open sets, (1,2)*-
minimal soft closed sets, (1,2)*-minimal soft (1,2)*-pre-closed sets, and semi (1,2)*-
minimal soft (1,2)*-pre-closed sets. Also, properties and the relation among these
concepts have been studied.
This article contains a new generalizations of Ϻ-hyponormal operators which is namely (Ϻ,θ)-hyponormal operator define on Hilbert space H. Furthermore, we investigate some properties of this concept such as the product and sum of two (Ϻ, θ)-hyponormal operators, At the end the operator equation where , has been used for getting several characterization of (Ϻ,θ)-hyponormal operators.
In this paper, the concept of soft closure spaces is defined and studied its basic properties. We show that the concept soft closure spaces are a generalization to the concept of
The theories of metric spaces and fuzzy metric spaces are crucial topics in mathematics.
Compactness is one of the most important and fundamental properties that have been widely used in Functional Analysis. In this paper, the definition of compact fuzzy soft metric space is introduced and some of its important theorems are investigated. Also, sequentially compact fuzzy soft metric space and locally compact fuzzy soft metric space are defined and the relationships between them are studied. Moreover, the relationships between each of the previous two concepts and several other known concepts are investigated separately. Besides, the compact fuzzy soft continuous functions are studie
... Show MoreIn this paper, we introduce the notation of the soft bornological group to solve the problem of boundedness for the soft group. We combine soft set theory with bornology space to produce a new structure which is called soft bornological group. So that both the product and inverse maps are soft bounded. As well as, we study the actions of the soft bornological group on the soft bornological sets. The aim soft bornological set is to partition into orbital classes by acting soft bornological group on the soft bornological set. In addition, we explain the centralizer, normalizer, and stabilizer in details. The main important results are to prove that the product of soft bornological groups is soft bornol
... Show MoreThe aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
In this paper we define a signal soft set as a mathematical tool to represent and study atoms, anti-atoms, electrons, anti-electrons, protons, and anti-protons, and generate a signal soft topology, with an example of signal soft topology on H2O.
In this paper, the C̆ech fuzzy soft closure spaces are defined and their basic properties are studied. Closed (respectively, open) fuzzy soft sets is defined in C̆ech fuzzy-soft closure spaces. It has been shown that for each C̆ech fuzzy soft closure space there is an associated fuzzy soft topological space. In addition, the concepts of a subspace and a sum are defined in C̆ech fuzzy soft closure space. Finally, fuzzy soft continuous (respectively, open and closed) mapping between C̆ech fuzzy soft closure spaces are introduced. Mathematics Subject Classification: 54A40, 54B05, 54C05.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.