In this research prepared Epoxy – Talc powder composites with weight ratio of Talc powder (0,5,10,15,20,25)% . The value of thermal conductivity increase with increasing ratio of talc powder and water absorption increase with increasing ratio of talc powder because the structure from magnesium silicate hydroxide and hydrophilic nature .Ethanol absorption decrease with increasing percentage talc powder compared with epoxy pure
In this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
The evaluation of the Nfayil limestones in Bahr Al-Najaf Depression as construction materials was done on 15 sites distributed over a region. The study included field and laboratory aspects. The field side included collecting information about the study area and samples. As for the laboratory side, laboratory tests were conducted to study the thermal conductivity of samples by a device called Lee’s disc in the Tikri University. The thermal conductivity results ranged between 2.34 and 0.27. The rocks are of high thermal insulation at low temperatures and low insulation at high temperatures according to the specifications of the suitability of limestone for thermal conductivity standards (ASTM C 1057-03-2010).
In this paper, a polymer-based composite material was prepared by hand Lay-up method consisting of epoxy resin as a base material reinforced by magnesium oxide powder once and silicon dioxide powder again and with different weight ratios (3, 6, 9 and 12) wt %. The three-point bending test was performed in normal conditions and after immersion in sulfuric acid. The results showed that the bending value decreased with the increase of the weighted ratio of the reinforcement material (MgO, SiO2). The Bending of samples reinforced by SiO2 was found to be less than the bending of samples reinforced by particles (MgO). For example, the bending of the SiO2 sample (0.32 mm) at the weighted ratio (3%) and for the MgO (0.18mm) sample at the weight
... Show MoreUnsaturated polyester toughened Epoxy was developed. Epoxy resin had toughened by weight fraction of 10, 20, 30, and 40 wt. % unsaturated polyester. FTIR spectroscopy has been used to investigating the intermolecular hydrogen bonding. Unsaturated polyester–epoxy matrices were characterized for their thermal properties. The FTIR test detected a peak shift of the functional groups which can explain cross-linking occurs between the two resins. The crosslinking between epoxy and unsaturated polyester confirmed via the existence of the stretching asymmetrical C-C band and contraction of the C-O band. The DSC test demonstrated that glass transition temperature value decreases with epoxy strengthening. The specific heat capacity and the
... Show MoreIn this work, zinc oxide nanoparticles (ZnONPs) and sawdust/epoxy composite (20:80) were mixed using a simple molding method with different ZnONPs concentrations of (0.1, 0.3, 0.5, 0.7, and 1.0 %). The samples of the nanocomposites were characterized by the Scanning Electron Microscopy (SEM) technique to demonstrate the homogeneity of the prepared ZnONPs/nanocomposites. The photocatalytic activity of the samples was examined using the methylene blue (MB) dye as a pollutant solution, through evaluation of the efficiency of the prepared compound in the treatment of organic pollutants under illumination by sunlight. The photocatalytic results showed that after 240 minutes of exposure to sunlight, the sample prepared using (0.5 vol.% of ZnON
... Show MoreThis paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr
... Show MoreHand-lay up method was used to prepare the samples made of epoxy (EP) as a matrix reinforced with chopped carbon fibers (CCF). The fatigue behavior of epoxy resin /chopped carbon fiber composites was studied with different weight percentage of chopped carbon fibers (2.5%,5%,7.5%,10%,12.5%). The fatigue test was carried out under alternate bending method, which was made by applying sinusoidal wave with constant displacement (15mm), stress ratio R=-1,and loading frequency 10Hz, which is believed to give a negligible temperature rise during the test. The results of the maximum stress, fatigue strength, fatigue limit and fatigue life of the tested composites are calculated from stress(S)-number of cycles(N) (S-N) curves.
It was shown that
The present studies are focused on the modification of the properties of epoxy resin with different additives namely aluminum, copper by preparing of composites systems with percentage (20%, 40% and 50%) of the above additives. The experimental results show that the D.C of conductivity on wt% filler content at ( 293-413 ) K electrical conductivity of all above composites increased with temperature for composites with filler contact and find the excellent electrical conductivity of copper and lie between (2.6*10-10 - 2.1*10-10)?.cm . The activation energy of the electrical conductivity is determined and found to decrease with increasing the filler concentration.