Preferred Language
Articles
/
ijs-552
Intelligent TRIPLE DES with N Round Based on Genetic Algorithm
...Show More Authors

     This work presents an approach for the applying Triple DES (TRIPLE DES) based on using genetic algorithm by adding intelligent feature for TRIPLE DES with N round for genetic algorithm. Encapsulated cipher file with special program which send an acknowledgment to a sender to know who decipher or  broken to  crash it , Thus it is considered as the initial step to improve privacy. The outcome for proposed system gives a good indication that it is a promising system compared with other type of cipher system.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Artificial Neural Network for TIFF Image Compression
...Show More Authors

The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256)  in our research, compressed them by using MLP for each

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
A Load Balancing Scheme for a Server Cluster Using History Results
...Show More Authors

Load balancing in computer networks is one of the most subjects that has got researcher's attention in the last decade. Load balancing will lead to reduce processing time and memory usage that are the most two concerns of the network companies in now days, and they are the most two factors that determine if the approach is worthy applicable or not. There are two kinds of load balancing, distributing jobs among other servers before processing starts and stays at that server to the end of the process is called static load balancing, and moving jobs during processing is called dynamic load balancing. In this research, two algorithms are designed and implemented, the History Usage (HU) algorithm that statically balances the load of a Loaded

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Cluster Analysis by Using Nonparametric Cubic B-Spline Modeling for Longitudinal Data
...Show More Authors

Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.

In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.

The longitudinal balanced data profile was compiled into subgroup

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Nonparametric Binary Logistic Regression
...Show More Authors

In this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro

... Show More
View Publication Preview PDF
Crossref