The current study involves an experimental investigation of plasma main parameters of a DC discharge with a hollow cathode (HCD) geometry in air using apertures of different diameters from the hollow cathode (1, 1.5, 2, and 2.5 cm). A tiny Langmuir probe is used to investigate the plasma properties. The HCD was operated at constant power of 12.4 W and gas pressures ranging between 0.1 to 0.8 torr. It was observed that the operational conditions strongly affect the electron temperature and density, while the hollow cathode diameter has not much influence. The main important observation was that at relatively high air pressure (>0.4 torr) two electron temperatures were obtained, while at relatively low pressure (<0.4 torr), a single electron temperature was found. The results showed that the measured electron temperature decreased nearly linearly with increasing gas pressure.
Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcem
... Show MoreSilver sulfide and the thin films Ag2Se0.8Te0.2 and Ag2Se0.8S0.2 created by the thermal evaporation process on glass with a thickness of 350 nm were examined for their structural and optical properties. These films were made at a temperature of 300 K. According to the X-ray diffraction investigation, the films are polycrystalline and have an initial orthorhombic phase. Using X-ray diffraction research, the crystallization orientations of Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2 (23.304, 49.91) were discovered (XRD). As (Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2) absorption coefficient fell from (470-774) nm, the optical band gap increased (2.15 & 2 & 2.25eV). For instance, the characteristics of thin films made of Ag2Se0.8Te0.2 and Ag2Se0.8S0.2
... Show MoreThis research include synthesized and characterization the compound [I] by reaction terephthaldehyde , mercaptoacetic acid and thiosemicarbazide with concentrated sulfuric acid then this compound reaction with ethyl chloroacetate and sodium acetate to product ester compound [II],the latter compound reaction with hydrazine hydrate to synthesized acid hydrazide [III] after that reaction with 4-alkoxy benzaldehyde[IV]n to synthesized Schiff bases compounds [V]n, the compound [VI] synthesized via reaction compound [I] with chloroacetic acid and sodium acetate then the compound[VI] reaction with 2-phenylenediamine in 4 N hydrochloric acid to product benzimidazole compound[VII]. The compounds characterized by melting points, FTIR and 1HNMR spectr
... Show MoreIn this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z
... Show MoreOptical fiber technology is without a doubt one of the most significant phases of the communications revolution and is crucial to our daily lives. Using the free version (2022) of RP Fiber Calculator, the modal properties for optical fibers with core radii (1.5−7.5) μm, core index (1.44−1.48) and cladding index (1.43−1.47) have been determined at a wavelength of 1000 nm. When the fiber core’s radius is larger than its operating wavelength, multimode fibers can be created. The result is a single-mode fiber in all other cases. All of the calculated properties, it has been shown, increase with increasing core radius. The modes’ intensity profiles were displayed.
The influence of pre- shot peening and welding parameters on mechanical and metallurgical properties of dissimilar and similar aluminum alloys AA2024-T3 and AA6061-T6 joints using friction stir welding have been studied. In this work, numbers of plates were equipped from sheet alloys in dimensions (150*50*6) mm then some of them were exposed to shot peening process before friction stir welding using steel ball having diameter 1.25 mm for period of 15 minutes. FSW joints were manufactured from plates at three welding speeds (28, 40, 56 mm/min) and welding speed 40mm/min was chosen at a rotating speed of 1400 rpm for welding the dissimilar pre- shot plates. Tow joints were made at rotational speed of 1000 rpm and welding speed of 40m/min f
... Show MoreIn the present work we prepared heterojunction not homogenous CdS/:In/Cu2S) by spray and displacement methods on glass substrate , CdS:In films prepared by different impurities constration. Cu2S prepared by chemical displacement method to improve the junction properties , structural and optical properties of the deposited films was achieved . The study shows that the film polycrystalline by XRD result for all film and the energy gap was direct to 2.38 eV with no effect on this value by impurities at this constration .