In this work, we give an identity that leads to establishing the operator . Also, we introduce the polynomials . In addition, we provide Operator proof for the generating function with its extension and the Rogers formula for . The generating function with its extension and the Rogers formula for the bivariate Rogers-Szegö polynomials are deduced. The Rogers formula for allows to obtain the inverse linearization formula for , which allows to deduce the inverse linearization formula for . A solution to a q-difference equation is introduced and the solution is expressed in terms of the operators . The q-difference method is used to recover an identity of the operator and the generating function for the polynomials .
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
In this paper we study necessary and sufficient conditions for a reverse- centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse- centralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal
Water quality assessment offers a scientific basis for water resource development and management. This research aims to assessment of Al-Rustamiya sewage treatment plant depending on annually changes and produces maps that declare changes on parameter during a period (2015-2018). Based on prior Government Department Baghdad Environment data which annually feature changes for samples from Northern Rustamiya have been estimated as a working model. Drawn a map of the Diyala River shows annual changes in the characteristics of the Diyala River, based on northern and southern Rustamiya effluent samples, and Diyala River samples. The characteristics that research focused on were biochemical
The aim of this paper is to introduce and study the concept of SN-spaces via the notation of simply-open sets as well as to investigate their relationship to other topological spaces and give some of its properties.
Continuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established.
The voice had a special place in the writting of the Andalusian poet (Ibn al-Abar ) , which aroused my attention because of the sonic capacity of the lettering inside the poetic at Ibn al-Abar poems . So Istudied the qualities of the lettering , structures and their exits . Scientists have not been able to determine the musical from the nonmusical sound , but we find the innate ability of Ibn al-Abar , which was able to determine this by using the lettering the right places and to revival the life to reflect the moments of his life , therefore came votes to express his purposes of praise and pride Etc. The poet Ibn al-Abar could exploit the lettering features in the effect of bilateral – static and moving and its ability to e
... Show MoreIn this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul
... Show MoreThe limitations of wireless sensor nodes are power, computational capabilities, and memory. This paper suggests a method to reduce the power consumption by a sensor node. This work is based on the analogy of the routing problem to distribute an electrical field in a physical media with a given density of charges. From this analogy a set of partial differential equations (Poisson's equation) is obtained. A finite difference method is utilized to solve this set numerically. Then a parallel implementation is presented. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a processing element. All nodes then execute computations in parall
... Show MoreThis paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
The class of quasi semi -convex functions and pseudo semi -convex functions are presented in this paper by combining the class of -convex functions with the class of quasi semi -convex functions and pseudo semi -convex functions, respectively. Various non-trivial examples are introduced to illustrate the new functions and show their relationships with -convex functions recently introduced in the literature. Different general properties and characteristics of this class of functions are established. In addition, some optimality properties of generalized non-linear optimization problems are discussed. In this generalized optimization problems, we used, as the objective function, quasi semi -convex (respectively, strictly quasi semi -convex
... Show More