The concepts of nonlinear mixed summable families and maps for the spaces that only non-void sets are developed. Several characterizations of the corresponding concepts are achieved and the proof for a general Pietsch Domination-type theorem is established. Furthermore, this work has presented plenty of composition and inclusion results between different classes of mappings in the abstract settings. Finally, a generalized notation of mixing maps and their characteristics are extended to a more general setting.
This paper aims to define and study new separation axioms based on the b-open sets in topological ordered spaces, namely strong - -ordered spaces ( ). These new separation axioms are lying between strong -ordered spaces and - - spaces ( ). The implications of these new separation axioms among themselves and other existing types are studied, giving several examples and counterexamples. Also, several properties of these spaces are investigated; for example, we show that the property of strong - -ordered spaces ( ) is an inherited property under open subspaces.
In this paper, we study the convergence theorems of the Modified Ishikawa iterative sequence with mixed errors for the uniformly continuous mappings and solving nonlinear uniformly continuous mappings equation in arbitrary real Banach space.
A dynamical system describes the consequence of the current state of an event or particle in future. The models expressed by functions in the dynamical systems are more often deterministic, but these functions might also be stochastic in some cases. The prediction of the system's behavior in future is studied with the analytical solution of the implicit relations (Differential, Difference equations) and simulations. A discrete-time first order system of equations with quadratic nonlinearity is considered for study in this work. Classical approach of stability analysis using Jury's condition is employed to analyze the system's stability. The chaotic nature of the dynamical system is illustrated by the bifurcation theory. The enhancement o
... Show MoreIn this paper we introduced many new concepts all of these concepts completely
depended on the concept of feebly open set. The main concepts which introduced in
this paper are minimal f-open and maximal f-open sets. Also new types of
topological spaces introduced which called Tf min and Tf max spaces. Besides,
we present a package of maps called: minimal f-continuous, maximal f-continuous,
f-irresolute minimal, f-irresolute maximal, minimal f-irresolute and maximal firresolute.
Additionally we investigated some fundamental properties of the concepts
which presented in this paper.
This paper intends to initiate a new type of generalized closed set in topological space with the theoretical application of generalized topological space. This newly defined set is a weaker form than the -closed set as well as -closed set. Some phenomenal characterizations and results of newly defined sets are inculcated in a proper manner. The characteristics of normal spaces and regular spaces are achieved in the light of the generalized pre-regular closed set.
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
The main objective of this work is to generalize the concept of fuzzy algebra by introducing the notion of fuzzy algebra. Characterization and examples of the proposed generalization are presented, as well as several different properties of fuzzy algebra are proven. Furthermore, the relationship between fuzzy algebra and fuzzy algebra is studied, where it is shown that the fuzzy algebra is a generalization of fuzzy algebra too. In addition, the notion of restriction, as an important property in the study of measure theory, is studied as well. Many properties of restriction of a nonempty family of fuzzy subsets of fuzzy power set are investigated and it is shown that the restriction of fuzzy algebra is fuzzy algebra too.