The Mannich reaction is one of the most important types of organic chemistry fundamental reactions. It is a crucial stage in the production of various medicines, natural goods, and industrial chemicals. Chemists' imaginations have always been piqued because of this. In general, the Mannich reactions can be used as part of a tandem reaction sequence to produce complex target molecules in an elegant and often easy manner. The following article examines and summarizes methods for synthesizing Mannich derivatives, in addition to offering a survey of recent advancements in several fields’ applications of the Mannich reaction, such as biological applications, antimicrobial activity, anticancer activity, anti-inflammation and antioxidant activity, antimalarial activity, anti-viral activity, and so on. We also go over how mannich base is used in industry and agriculture.
Abstract
The hydrometallurgical method was used to platinum and palladium leaching with aqua regia solution (3HCl: HNO3). The leaching experiments were designed to obtain the optimum conditions by using Taguchi method with 16 experiments at three different factors (time, temperature and solid to liquid ratio), and each factor has four different levels. In this study, leaching the powder sample of catalytic converter that contains platinum and palladium was conducted on the basis of the formation of chloro complexes platinum and palladium (PtCl62-, PdCl42-) with different concentrations in the acidic solution. The optimum condi
... Show MoreResearch summary
Westernization is a term not familiar to our scholars at the beginning of the emergence of translation from Western literature, sciences and arts in its detailed form now.
Westernization was not an issue that those Greeks, Persians, Romans, Indians and others worked on translating those sciences and cultures. Rather, it was a process of transferring a new philosophy and logic that had not been previously seen by the Arabs, so they were affected by it in a strange way, to the point of fascination by some of them. For this reason, this research came to clarify these issues and address them within the scientific methodology.
This study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the Gibbs free energy had a value negative sign.
I n this paper ,we 'viii consider the density questions associC;lted with the single hidden layer feed forward model. We proved that a FFNN with one hidden layer can uniformly approximate any continuous function in C(k)(where k is a compact set in R11 ) to any required accuracy.
However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function non-dense, then we need more hidden layers. Also, we have shown that there exist localized functions and that there is no t
... Show MoreIndium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
Atorvastatin calcium (ATR) is an antihyperlipidemic agent used for lowering blood cholesterol levels. However, it is very slightly soluble in water with poor oral bioavailability, which interferes with its therapeutic action. It is classified as a class II drug according to Biopharmaceutical Classification System (low solubility and high permeability).
This article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
In the present investigation, 24 adult dipteran species with forensic importance belonging to 13 genera and 8 families that were collected from different localities of Iraq. The specimens were identified by different taxonomical keys; in addition the date and localities of collecting specimens were recorded.
ABSTRACTBackground: cochlear implants are electronic devices that convert sound energy into electrical signals to stimulate ganglion cells and cochlear nerve fibers. These devices are indicated for patients with severe to profound sensorineural hearing losses who receive little or no benefit from hearing aids. The implant basically takes over the function of the cochlear hair cells. The implant consists of external components (microphone, speech processor and transmitting coil) and internal components (receiver stimulator and electrode array). The implant is inserted via a trans mastoid facial recess approach to the round window and scala tympani.Objectives: to determine the effectiveness and safety of non fixation method in cochlear imp
... Show More