The dielectric properties of the fabricated composites MgO:ZnO with various mixing ratios (100,75:25,50:50,25:75, and 100 wt. %)were investigated. The structure analysis was conducted using X-ray diffraction. The structure phase, crystallite size and purity of the fabricated MgO:ZnO composites were confirmed using X-ray diffraction spectra. The results declared that the diffraction spectrum of 100%MgO composite samples were compatible with cubic structure along the plane (200) while the structures of residual composite's samples were compatible with hexagonal structures. The crystal size of the most pronounced plane (101) for crystal growth was changed from 30.4 nm to 53.2 nm by increasing ZnO ratio from 25 to 100wt%. The dielectric properties were studied as function of frequency over the range (50Hz-10MHz). The a.c conductivity σa.c(ω) showed power low dependence for the full frequency range except for the composites samples of 0 and 75 %wt. ZnO which showed d.c region in the low frequency range. The exponent (s) values which represents the slope of ln σa.c(ω) and ln(ω) changed in non-regular manner by increasing the ZnO ratio. The dielectric constant ε1 and the dielectric loss ε2 increased with the increase of the ZnO ratio up to 75% ZnO and then decreased with further increase of ZnO ratio. The dielectric loss peaks observed in the plot diagram of ε2 against ln(ω) is found to shift towards the high-frequency side which indicates the decrease of relaxation time and prompt movement of charge carriers .The polarizability values (α) estimated from the COLE –COLE diagram increased from 0.112 to 0.467 when the ratio of ZnO changed from 0 to 50wt.% which referred to reduction of the intermolecular forces. While (α) reduced drastically at 75wt.% ZnO which referred to the growing of the intermolecular forces.
Mortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.
The conventional solid-state reaction method was utilized to prepare a series of superconducting samples of the nominal composition Bi2-xPb0.3WxSr2Ca2Cu3O10+d with 0≤x≤0.5 of 50 nm particle size of tungsten sintered at 8500C for 140h in air . The influence of substitution with W NPs at bismuth (Bi) sites was characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and dc electrical resistivity. Room temperature X-ray diffraction analysis revealed that there exists two phases, i.e. Bi-(2223) and Bi-(2212), in addition to the impurity phases of (SrCa) 2Cu2O3, Sr2Ca2Cu7<
... Show MoreNanocrystalline copper sulphide (Cu2-xS) powders were synthesized by chemical precipitation from their aqueous solutions composed of different molar ratio of copper sulfate dehydrate (CuSO4.5H2O) and thiorea (NH2)2CS as source of Cu+2, S-2 ions respectively, and sodium ethylene diamine tetra acetic acid dehydrate (EDTA) as a complex agent. The compositions, morphological and structural properties of the nanopowders were characterized by energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD), respectively. The compositional results showed that the copper content was high and the Sulfur content was low for both CuS and Cu2S nanopowders. SEM images shows that all products consist of aggregate o
... Show MoreThermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3
New 1,3-oxazol-5(4H)-one(3) was synthesized by cyclization of[(4-Methyl phenyl-carbonyl)amino]acetic acid (2). The starting materials were readily obtained by acylation of 2-amino acetic acid (Glycine) with 4-methyl phenyl chloride .Imidazole(4) was synthesized by reaction of compound (3) with hydrazine hydrate (99%). Compound (4) was isolated and characterized by 1HNMR , FTIR , uv-vis spectroscopy and elemental analysis (C.H.N). Compound (4) has been used as a ligand (L) to prepare a number of metal complexes with Cr(III), Mn(II), Co(II), Ni(II) , Cu(II) and Zn(II).
The prepared complexes were isolated and characterized by FTIR and Uv-vis spectroscopy elemental analysis (C.H.N), flame atomic absorption technique, as well as magnetic
Optical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a
... Show MoreThe presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibioti
... Show MoreWell dispersed Cu2FeSnSe4 (CFTSe) nanofilms were synthesized by hot-injection method. The structural and morphological measurements were characterized using XRD (X-ray diffraction), Raman spectroscopy, SEM (scanning electron microscopy), and TEM (transmission electron microscopy). Chemical composition and optical properties of as-synthesized CFTSe nanoparticles were characterized using EDS (energy dispersive spectroscopy) and UV-Vis spectrophotometry. The average particle size of the nanoparticles was about 7-10 nm. The UV-Vis absorption spectra showed that the synthesized CFTS nanofilms have a band gap (Eg) of about 1.16 eV. Photo-electrochemical characteristics of CFTSe nanoparticles were studied and indicated their potential application
... Show More