Recently, much secured data has been sent across the internet and networks. Steganography is very important because it conceals secure data in images, texts, audios, protocols, videos, or other mediums. Video steganography is the method of concealing data in frames of video format. A video is a collection of frames or images used for hidden script messages. This paper proposes a technique to encrypt secret messages using DNA and a 3D chaotic map in video frames using the raster method. This technique uses three steps: Firstly, converting video frames into raster to extract features from each frame. Secondly, encryption of secret messages using encoded forms of DNA bases, inverse/inverse complements of DNA, and utilizing 3D chaotic maps, Thirdly, hiding encryption secret messages in that raster video frame by using a secret key in the four corners of each video frame. This technique hides large amounts of secret data because the video frame is large and accepts any message size. The outcomes are efficient, robust, highly secure, and can tolerate high capacity. These outcomes have been obtained from a set of tests like: peak signal to noise ratio (PSNR), mean square error (MSE), entropy, correlation coefficient, and histogram and capacity.
In folk medicine there are various medicinal amalgamation possessing hepatoprotective activity. This activity is of significance because several toxins cause liver injury. Hence, many pharmaceutical companies are targeting herbal medicines for the treatment of liver abnormalities and towards evolving a safe and effective formulation with desired route of administration. In current review we have focused on the studies showing hepatoprotective effect using marine compounds and plant derived compounds. Liver disorder, a global health problem, usually include acute or chronic hepatitis, heptoses, and cirrhosis. It may be due to toxic chemicals and certain antibiotics. Uncontrolled consumption of alcohol also affects liver in an unhealthy wa
... Show MoreIn this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show More