In this paper, subclasses of the function class ∑ of analytic and bi-univalent functions associated with operator L_q^(k, λ) are introduced and defined in the open unit disk △ by applying quasi-subordination. We obtain some results about the corresponding bound estimations of the coefficients a_(2 ) and a_(3 ).
Contents IJPAM: Volume 116, No. 3 (2017)
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreThis paper concentrates on employing the -difference equations approach to prove another generating function, extended generating function, Rogers formula and Mehler’s formula for the polynomials , as well as thegenerating functions of Srivastava-Agarwal type. Furthermore, we establish links between the homogeneous -difference equations and transformation formulas.
The aim of this paper is to introduce and investigate new subclasses of regular functions defined in . The coefficients estimate and for functions in these subclasses are determined. Many of new and known consequences are shown as particular cases of our outcomes.
We presented in this paper a new class containing analytic univalent functions defined on unit disk. We obtained many geometric properties , like , coefficient inequality , distortion and growth theorems, convolution property, convex set, arithmetic mean and radius of starlikness and convexity by using Gaussian hypergeometric function for the class
The aim of this paper is to prove a theorem on the Riesz means of expansions with respect to Riesz bases, which extends the previous results of [1] and [2] on the Schrödinger operator and the ordinary differential operator of 4-th order to the operator of order 2m by using the eigen functions of the ordinary differential operator. Some Symbols that used in the paper: the uniform norm. <,> the inner product in L2. G the set of all boundary elements of G. ˆ u the dual function of u.
Let R be a ring and let A be a unitary left R-module. A proper submodule H of an R-module A is called 2-absorbing , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H or rs∈[H:A], and a proper submodule H of an R-module A is called quasi-prime , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H. This led us to introduce the concept pseudo quasi-2-absorbing submodule, as a generalization of both concepts above, where a proper submodule H of an R-module A is called a pseudo quasi-2-absorbing submodule of A, if whenever rsta∈H,where r,s,t∈R,a∈A, implies that either rsa∈H+soc(A) or sta∈H+soc(A) or rta∈H+soc(A), where soc(A) is socal of an
... Show MoreIn this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.