Glaucoma is one of the most dangerous eye diseases. It occurs as a result of an imbalance in the drainage and flow of the retinal fluid. Consequently, intraocular pressure is generated, which is a significant risk factor for glaucoma. Intraocular pressure causes progressive damage to the optic nerve head, thus leading to vision loss in the advanced stages. Glaucoma does not give any signs of disease in the early stages, so it is called "the Silent Thief of Sight". Therefore, early diagnosis and treatment of retinal eye disease is extremely important to prevent vision loss. Many articles aim to analyze fundus retinal images and diagnose glaucoma. This review can be used as a guideline to help diagnose glaucoma. It presents 63 articles related to the applications of fundus retinal analysis. Applications of the glaucomatous image classification are improving fundus images by locating and segmenting the optic disc, optic cup, fovea, and blood vessels. The study also presents datasets, metrics, and parameters that indicate the changes in retina structure and the steps and results for each paper.
This paper presents a proposed method for (CBIR) from using Discrete Cosine Transform with Kekre Wavelet Transform (DCT/KWT), and Daubechies Wavelet Transform with Kekre Wavelet Transform (D4/KWT) to extract features for Distributed Database system where clients/server as a Star topology, client send the query image and server (which has the database) make all the work and then send the retrieval images to the client. A comparison between these two approaches: first DCT compare with DCT/KWT and second D4 compare with D4/KWT are made. The work experimented over the image database of 200 images of 4 categories and the performance of image retrieval with respect to two similarity measures namely Euclidian distance (ED) and sum of absolute diff
... Show MoreIn this work, a new formula of intensity distribution in image plane of elliptical object was founded (Elliptical spread function), by using optical system including circular aperture. The Gauss quadrature method of numerical integral was used for calculating equation's integrals. Curves are shown for system having focal error and intensity distribution in focal axis.
Biological image edge detection preserving the important structural properties in an image. Detecting accurate edges are very important for analyzing the basic properties associated with a biological image. Gradient operator plays very important role in edge detection. In this paper the images had been using are color biological images taken from microbiology laboratory at the biological department college of science Al-MustansiriyhUniversity and the effect of gradient operation have applied on around 10 different biological color images but view only two. In our proposed approach comparative of various gradient of biological image include (gradient of image, gradient of image using first order derivative edge detection (Soble,Prewitt,Ro
... Show MoreFG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6
The tasseled cap transformation (TCT) is a useful tool for compressing spectral data into a few bands associated with physical scene characteristics with minimal information loss. TCT was originally evolved from the Landsat multi-spectral scanner (MSS) launched in 1972 and is widely adapted to modern sensors. In this study, we derived the TCT coefficients for operational land imager (OLI) sensor on-board Landsat-8 acquired at 28 Sep.2013. A newly classification method is presented; the method is based on dividing the scatterplot between the Greenness and the Brightness of TCT into regions corresponding to their reflectance values. The results from this paper suggest that the TCT coefficient derived from the OLI bands at September is the
... Show MoreThe denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreAlthough the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreThe easternmost Mediterranean Basin is a candidate to be one of the most important hydrocarbon regions in the world, especially after significant gas discoveries in Levantine Basin in 2009. Offshore Syria is one of the easternmost Mediterranean areas which is still an unexplored virgin area. The seismic interpretation results of the study area showed encouraging evidences of considerable hydrocarbon accumulations within different sedimentary successions, which are Direct Hydrocarbon Indicators (DHIs). Indicators such as reflectivity anomalies (flat spots and dim spots) and polarity reversal were found within significant structural highs of Tertiary or/Late Cretaceous and Early Jurassic successions. Also, gas chim
... Show MoreLanguage Teaching & Leaning Problems at the Iraqi university level: Image & Reality