Wireless sensor network (WSN) security is an important component for protecting data from an attacker. For improving security, cryptography technologies are divided into two kinds: symmetric and asymmetric. Therefore, the implementation of protocols for generating a secret key takes a long time in comparison to the sensor’s limitations, which decrease network throughput because they are based on an asymmetric method. The asymmetric algorithms are complex and decrease network throughput. In this paper, an encryption symmetric secret key in wireless sensor networks (WSN) is proposed. In this work, 24 experiments are proposed, which are encryption using the AES algorithm in the cases of 1 key, 10 keys, 25 keys, and 50 keys. In each experiment, two chains are combined by using a hash function (SHA-2) to produce secret keys. The Network Simulator Version 2 (NS2) was used to assess the network throughput for the generated key. The randomness of the suggested LWM method has been tested by using the Diehard statistical test and the Entropy test. The results of the tests show that the encryption secret keys have a high level of data randomness.
With the wide developments of computer science and applications of networks, the security of information must be increased and make it more complex. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is important because of its strong encryption. The proposed updates are represented by encryption and decryption Rijndael S-Box using NTRU algorithm. These modifications enhance the degree of
... Show MoreBioinformatics is one of the computer science and biology sub-subjects concerned with the processes applied to biological data, such as gathering, processing, storing, and analyzing it. Biological data (ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein sequences) has many applications and uses in many fields (data security, data segmentation, feature extraction, etc.). DNA sequences are used in the cryptography field, using the properties of biomolecules as the carriers of the data. Messenger RNA (mRNA) is a single strand used to make proteins containing genetic information. The information recorded from DNA also carries messages from DNA to ribosomes in the cytosol. In this paper, a new encryption technique bas
... Show MoreAbstract
Zigbee is considered to be one of the wireless sensor networks (WSNs) designed for short-range communications applications. It follows IEEE 802.15.4 specifications that aim to design networks with lowest cost and power consuming in addition to the minimum possible data rate. In this paper, a transmitter Zigbee system is designed based on PHY layer specifications of this standard. The modulation technique applied in this design is the offset quadrature phase shift keying (OQPSK) with half sine pulse-shaping for achieving a minimum possible amount of phase transitions. In addition, the applied spreading technique is direct sequence spread spectrum (DSSS) technique, which has
... Show MoreDue to the large-scale development in satellite and network communication technologies, there is a significant demand for preserving the secure storage and transmission of the data over the internet and shared network environments. New challenges appeared that are related to the protection of critical and sensitive data
from illegal usage and unauthorized access. In this paper, we address the issues described above and develop new techniques to eliminate the associated problems. To achieve this, we propose a design of a new sensor node for tracking the location of cars and collecting all information and all visited locations by cars, followed by
encryption in a sensor node and saving in the database. A microcontroller of Arduino es
Recently, with the development multimedia technologies and wireless telecommunication, Voice over Internet Protocol, becomes widely used in communication between connecting people, VoIP allows people that are connected to the local network or the Internet to make voice calls using digital connection instead of based on the analog traditional telephone network. The technologies of Internet doesn’t give any security mechanism and there is no way to guarntee that the voice streams will be transmitted over Internet or network have not been intercepted in between. In this paper, VoIP is developed using stream cipher algorithm and the chaotic cryptography for key generator. It is based on the chaotic maps for generating a one-time rando
... Show MoreEstablishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show MoreThe paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreIn recent years, the rapid development in the field of wireless technologies led to the appearance of a new topic, known as the Internet of things (IoT). The IoT applications can be found in various fields of our life, such as smart home, health care, smart building, and etc. In all these applications, the data collected from the real world are transmitted through the Internet; therefore, these data have become a target of many attacks and hackers. Hence, a secure communication must be provided to protect the transmitted data from unauthorized access. This paper focuses on designing a secure IoT system to protect the sensing data. In this system, the security is provided by the use of Lightweight AES encryption algorithm to encrypt the d
... Show MoreNowadays, the rapid development of multi-media technology and digital images transmission by the Internet leads the digital images to be exposed to several attacks in the transmission process. Therefore, protection of digital images become increasingly important.
To this end, an image encryption method that adopts Rivest Cipher (RC4) and Deoxyribonucleic Acid (DNA) encoding to increase the secrecy and randomness of the image without affecting its quality is proposed. The Means Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Coefficient Correlation (CC) and histogram analysis are used as an evaluation metrics to evaluate the performance of the proposed method. The results indicate that the proposed method is secure ag
... Show MoreEstablishing coverage of the target sensing field and extending the network’s lifetime, together known as Coverage-lifetime is the key issue in wireless sensor networks (WSNs). Recent studies realize the important role of nature-inspired algorithms in handling coverage-lifetime problem with different optimization aspects. One of the main formulations is to define coverage-lifetime problem as a disjoint set covers problem. In this paper, we propose an evolutionary algorithm for solving coverage-lifetime problem as a disjoint set covers function. The main interest in this paper is to reflect both models of sensing: Boolean and probabilistic. Moreover, a heuristic operator is proposed as a local refinement operator to improve the quality
... Show More