Preferred Language
Articles
/
ijs-5314
Encryption Symmetric secret Key in Wireless Sensor Network Using AES Algorithm

      Wireless sensor network (WSN) security is an important component for protecting data from an attacker. For improving security, cryptography technologies are divided into two kinds: symmetric and asymmetric. Therefore, the implementation of protocols for generating a secret key takes a long time in comparison to the sensor’s limitations, which  decrease network throughput because they are based on an asymmetric method. The asymmetric algorithms are complex and decrease network throughput. In this paper, an encryption symmetric secret key in wireless sensor networks (WSN) is proposed. In this work, 24 experiments are proposed, which are encryption using the AES algorithm in the cases of 1 key, 10 keys, 25 keys, and 50 keys. In each experiment, two chains are combined by using a hash function (SHA-2) to produce secret keys. The Network Simulator Version 2 (NS2) was used to assess the network throughput for the generated key. The randomness of the suggested LWM method has been tested by using the Diehard statistical test and the Entropy test. The results of the tests show that the encryption secret keys have a high level of data randomness.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Information Hiding using LSB Technique based on Developed PSO Algorithm

<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi

... Show More
Scopus (17)
Crossref (3)
Scopus Crossref
View Publication
Publication Date
Thu Feb 01 2024
Journal Name
Ain Shams Engineering Journal
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Solving Linear and Nonlinear Fractional Differential Equations Using Bees Algorithm

A numerical algorithm for solving linear and non-linear fractional differential equations is proposed based on the Bees algorithm and Chebyshev polynomials. The proposed algorithm was applied to a set of numerical examples. Faster results are obtained compared to the wavelet methods.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Optimal Robot Path Planning using Enhanced Particle Swarm Optimization algorithm

The aim of robot path planning is to search for a safe path for the mobile robot. Even though there exist various path planning algorithms for mobile robots, yet only a few are optimized. The optimized algorithms include the Particle Swarm Optimization (PSO) that finds the optimal path with respect to avoiding the obstacles while ensuring safety. In PSO, the sub-optimal solution takes place frequently while finding a solution to the optimal path problem. This paper proposes an enhanced PSO algorithm that contains an improved particle velocity. Experimental results show that the proposed Enhanced PSO performs better than the standard PSO in terms of solution’s quality. Hence, a mobile robot implementing the proposed algorithm opera

... Show More
Scopus (11)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Solving Flexible Job Shop Scheduling Problem Using Meerkat Clan Algorithm

Meerkat Clan Algorithm (MCA) that is a swarm intelligence algorithm resulting from watchful observation of the Meerkat (Suricata suricatta) in the Kalahari Desert in southern Africa. Meerkat has some behaviour. Sentry, foraging, and baby-sitter are the behaviour used to build this algorithm through dividing the solution sets into two sets, all the operations are performed on the foraging set. The sentry presents the best solution. The Flexible Job Shop Scheduling Problem (FJSSP) is vital in the two fields of generation administration and combinatorial advancement. In any case, it is very hard to accomplish an ideal answer for this problem with customary streamlining approaches attributable to the high computational unpredictability. Most

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 25 2018
Journal Name
Iraqi Journal Of Science
Refractive Index Sensor Based on Micro- Structured Optical Fibers with Using Finite Element Method

In this paper a refractive index sensor based on micro-structured optical fiber has been proposed using Finite Element Method (FEM). The designed fiber has a hexagonal cladding structure with six air holes rings running around its solid core.  The air holes of fiber has been infiltrated  with different liquids such as water , ethanol, methanol, and toluene then sensor characteristics like ; effective refractive index , confinement loss, beam profile of the fundamental mode, and sensor resolution are investigated by employing the FEM. This designed sensor characterized by its low confinement loss and high resolution so a small change in the analyte refractive index could be detect which is could be useful to detect the change of

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Several Subclasses of r-Fold Symmetric Bi-Univalent Functions possess Coefficient Bounds

       In this paper we offer two new subclasses of an open unit disk of r-fold symmetric bi-univalent functions. The Taylor-Maclaurin coefficients  have their coefficient bounds calculated. Furthermore, for functions in , we have solved Fekete-  functional issues. For the applicable classes, there are also a few particular special motivator results.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Positive Definiteness of Symmetric Rank 1 (H-Version) Update for Unconstrained Optimization

Several attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of  Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite prope

... Show More
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Spiking Neural Network in Precision Agriculture

In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system  is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
The Performance Differences between Using Recurrent Neural Networks and Feedforward Neural Network in Sentiment Analysis Problem

 With the spread use of internet, especially the web of social media, an unusual quantity of information is found that includes a number of study fields such as psychology, entertainment, sociology, business, news, politics, and other cultural fields of nations. Data mining methodologies that deal with social media allows producing enjoyable scene on the human behaviour and interaction. This paper demonstrates the application and precision of sentiment analysis using traditional feedforward and two of recurrent neural networks (gated recurrent unit (GRU) and long short term memory (LSTM)) to find the differences between them. In order to test the system’s performance, a set of tests is applied on two public datasets. The firs

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF