This study aimed to improve the microencapsulation technique using a type coating the encapsulation Layer by Layer, which provide the best protection for life Lactobacillus casei in the extrusion method and use the microencapsulation of materials of the protein concentrated by protein 80% and the coating with alginate and chitosan have the results showed the variation in the difference of the binding process encapsulation yield among the types of coating through. by studying of these the effect o stability of the bio probiotic free cell and the three types coated towards three different concentrations from bile salts 0, 0.3, 0.5 and 0.7% when the periods of time different of zero and two and three hours at incubation the recorded
... Show MoreNon-thermal atmospheric pressure plasma has emerged as a
new promising tool in medicine and biology. In this work, A DBD
system was built as a source of atmospheric pressure non-thermal
Plasma suitable for clinical and biological applications. E. coli and
staphylococcus spp bacteria were exposed to the DBD plasma for a
period of time as inactivation (sterilization) process. A series of
experiments were achieved under different operating conditions. The
results showed that the inactivation, of the two kinds of bacteria, was
affected (increasing or decreasing) according to operation conditions
because they affects, as expected, the produced plasma properties
according to those conditions.
Iodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show MoreAbstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.
In this work the Aluminum plasma in Air produced by Nd: YAG pulsed laser, (λ = 1064 nm, τ = 6 ns) has been studied with a repletion rate of 10 Hz. The laser interaction in Al target (99.99%) under air atmosphere generates plasma, which is produced at room temperature; with variation in the energy laser from 600-900 mJ. The electron temperature and the electron density have been determined by optical emission spectroscopy and by assuming a local thermodynamic equilibrium (LTE) of the emitting species. Finally the electron temperature was calculated by the Boltzmann plot from the relative intensities of spectral lines and electron density was calculated by the Stark-broadening of emission line.
Comsol multiphysics software is established to make a simulation that is comparable with experimental device. by utilizing comsol, the positive column domain of direct-current glow discharge with argon is considered for both of different applied voltage and working gas pressure. The calculations are exhibited by using a precise collision cross sections and Townsend coefficients for the argon. The impacts of voltage and pressure on the Debye length, number of particles in Debye sphere and plasma frequency are calculated and graphically delineated. With this regard to the dependence of plasma parameters on the applied voltage and pressure, some of them are found to be compatible with the experimental
... Show MoreCopper plasma is generated with the existence of an external magnetic field and without its presence utilizing Nd:YAG laser (1064 nm ,9 ns) in different pulse laser energy which ranges from(100 to 400) mJ in a vacuum. Plasma parameter beta ) is least than 1, this indicates that the existence of magnetic field confinement effect is proven. Note that both the electron temperature and electron density increases with the laser pulse energy increasing , Both are higher in the presence of a magnetic field.
In this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
The microwave induced plasma jet (MIPJ) system was built using local materials and based on a tapered waveguide. The parameters of this plasma were determined like electron temperature Te, electron density ne. the other parameters such as plasma frequency( fp), the Debye length( λD), and the number of particles in the Debye sphere( Nd) It has also been studied. The study were done at different Ar flow rate ranging from (2-10) l/m and a discharge tube diameter ranging from (2-10) mm. all of these parameters were determined depending on the MIPJ spectrum. it turned out that there is a high possibility of controlling the parameters of MIPJ through manipulating these parameters.
This paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles.
The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into
... Show More