Preferred Language
Articles
/
ijs-5203
Educational Data Mining For Predicting Academic Student Performance Using Active Classification
...Show More Authors

     The increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning had been utilized in the classification. Four techniques had been applied for classifying the features: Random Forest (RF) algorithm, Label Propagation (LP), Logistic Regression (LR), and Multilayer Perceptron (MLP). The accuracies of prediction were 95.121%, 92.195%, 92.292%, and 93.951% respectively. Also, the RF algorithm has been utilized for assorting the features depending on their importance.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
Assessment of nuclear radiation pollution in uranium mining-impacted soil
...Show More Authors

Activities associated with mining of uranium have generated significant quantities of waste materials containing uranium and other toxic metals. A qualitative and quantitative study was performed to assess the situation of nuclear pollution resulting from waste of drilling and exploration left on the surface layer of soil surrounding the abandoned uranium mine hole located in the southern of Najaf province in Iraq state. To measure the specific activity, twenty five surface soil samples were collected, prepared and analyzed by using gamma- ray spectrometer based on high counting efficiency NaI(Tl) scintillation detector. The results showed that the specific activities in Bq/kg are 37.31 to 1112.47 with mean of 268.16, 0.28 to 18.57 with

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
POLLUTION OF MINING INDUSTRY SULFUR PURIFICATION PLANT AT AL MISHRAQ
...Show More Authors

The Al Mishraq site has been the subject of many scientific studies for the period before and
after the fire in 2003. Five visits to the site were conducted twice in 2003 for general fact-finding, twice
in 2004, and once in 2005 for detailed sampling and monitoring. Desk-based research and laboratory analysis of soil and water samples results indicate that surface water and groundwater pollution from Al Mishraq site was significant at the time of its operation. The primary pollution source was the superheated water injection process, while the principal receptor is the River Tigris. Now that the plant is idle, this source is absent. Following the June 2003 sulphur fire, initial investigations indicate that short damage to
vegeta

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 21 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Emotion Recognition Based on Mining Sub-Graphs of Facial Components
...Show More Authors

Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 31 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Application of data content analysis (DEA) technology to evaluate performance efficiency: applied research in the General Tax Authority
...Show More Authors

The aim of the research is to use the data content analysis technique (DEA) in evaluating the efficiency of the performance of the eight branches of the General Tax Authority, located in Baghdad, represented by Karrada, Karkh parties, Karkh Center, Dora, Bayaa, Kadhimiya, New Baghdad, Rusafa according to the determination of the inputs represented by the number of non-accountable taxpayers and according to the categories professions and commercial business, deduction, transfer of property ownership, real estate and tenders, In addition to determining the outputs according to the checklist that contains nine dimensions to assess the efficiency of the performance of the investigated branches by investing their available resources T

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 12 2023
Journal Name
Iraqi Postgraduate Medical Journal
The Accuracy of Electrocardiographic Criteria for Predicting Left Ventricular Hypertrophy in adult Patients with Systemic Hypertension
...Show More Authors

ABSTRACT: BACKGROUND: Left ventricular hypertrophy is a significant risk factor for cardiovascular complications such as ischemic heart disease, heart failure, sudden death, atrial fibrillation, and stroke. A proper non-expensive tool is required for detection of this pathology. Different electrocardiographic (ECG) criteria were investigated; however, the results were conflicting regarding the accuracy of these criteria. OBJECTIVE: To assess the accuracy of three electrocardiographic criteria in diagnosis of left ventricular hypertrophy in adult patients with hypertension using echocardiography as a reference test. PATIENTS AND METHODS: This is a hospital-based cross sectional observational study which included 340 adult patients with a his

... Show More
Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
The 2nd Universitas Lampung International Conference On Science, Technology, And Environment (ulicoste) 2021
A comparison between IRI-2016 and ASAPS models for predicting foF2 ionospheric parameter over Baghdad city
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Geoenergy Science And Engineering
Empirical model for predicting slug-pseudo slug and slug-churn transitions of upward air/water flow
...Show More Authors

A pseudo-slug flow is a type of intermittent flow characterized by short, frothy, chaotic slugs that have a structure velocity lower than the mixture velocity and are not fully formed. It is essential to accurately estimate the transition from conventional slug (SL) flow to pseudo-slug (PSL) flow, and from SL to churn (CH), by precisely predicting the pressure losses. Recent research has showed that PSL and CH flows comprise a significant portion of the conventional flow pattern maps. This is particularly true in wellbores and pipelines with highly deviated large-diameter gas-condensate wellbores and pipelines. Several theoretical and experimental works studied the behavior of PSL and CH flows; however, few models have been suggested to pre

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
New Adaptive Satellite Image Classification Technique for Al habbinya Region West of Iraq
...Show More Authors

   Developing a new adaptive satellite images classification technique, based on a new way of merging between regression line of best fit and new empirical conditions methods. They are supervised methods to recognize different land cover types on Al habbinya region. These methods should be stand on physical ground that represents the reflection of land surface features.      The first method has separated the arid lands and plants. Empirical thresholds of different TM combination bands; TM3, TM4, and TM5 were studied in the second method, to detect and separate water regions (shallow, bottomless, and very bottomless). The Optimum Index Factor (OIF) is computed for these combination bands, which realized

... Show More
View Publication Preview PDF