The increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning had been utilized in the classification. Four techniques had been applied for classifying the features: Random Forest (RF) algorithm, Label Propagation (LP), Logistic Regression (LR), and Multilayer Perceptron (MLP). The accuracies of prediction were 95.121%, 92.195%, 92.292%, and 93.951% respectively. Also, the RF algorithm has been utilized for assorting the features depending on their importance.
When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accu
... Show MoreDetection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200
... Show MoreSlow learning becomes a problem in the present , where it comprises ratio musnt ignore in every school . So , its one of education problems facing by parents and teachers .
Slow learning subject regard of new subject attract the attention in the last years of the 20th century where the attention was focusing on the other disabilities but the existence of number of healthy children suffering from Learning problems attract the attention of the researchers .
So , this study aims at recognizing the degree of self , concept among slow learner students and the differences significance of self concept according to sex and academic degree of parents variables.
Because there is not tool , the researcher build a
... Show MoreToday, problems of spatial data integration have been further complicated by the rapid development in communication technologies and the increasing amount of available data sources on the World Wide Web. Thus, web-based geospatial data sources can be managed by different communities and the data themselves can vary in respect to quality, coverage, and purpose. Integrating such multiple geospatial datasets remains a challenge for geospatial data consumers. This paper concentrates on the integration of geometric and classification schemes for official data, such as Ordnance Survey (OS) national mapping data, with volunteered geographic information (VGI) data, such as the data derived from the OpenStreetMap (OSM) project. Useful descriptions o
... Show MoreThe research aims to characterize the strategic plan of the Educational Professional Development Center, to reveal the most important training needs for teachers from this center, to reveal the extent to which this center meets those needs, and to identify the differences between teacher responses about the degree of importance, availability of those needs according to variables of sex, specialization, and years of experience. This descriptive study adopted a questionnaire applied to (256) teachers in the K.S.A. The results of the study showed that all training needs ranged in the degree of importance from large to very large and that the most important were the skills associated with communicating with members of the learning community.
... Show MoreFor many years, reading rate as word correct per minute (WCPM) has been investigated by many researchers as an indicator of learners’ level of oral reading speed, accuracy, and comprehension. The aim of the study is to predict the levels of WCPM using three machine learning algorithms which are Ensemble Classifier (EC), Decision Tree (DT), and K- Nearest Neighbor (KNN). The data of this study were collected from 100 Kurdish EFL students in the 2nd-year, English language department, at the University of Duhok in 2021. The outcomes showed that the ensemble classifier (EC) obtained the highest accuracy of testing results with a value of 94%. Also, EC recorded the highest precision, recall, and F1 scores with values of 0.92 for
... Show MoreAnalysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval ( are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi
... Show MoreStudents at secondary school, particularly at the beginning of their academic lives face many difficulties and problems in various psychological, educational, and social fields, which require them to make many decisions and solve problems that may confront them while maintaining their optimism and positivity for life in general and for academic life in particular. Thus, the current study aims to investigate the academic optimism of distinguished students and identify the differences in academic optimism in terms of gender. The researcher applied the scale to a sample of (336) students, (145) males, and (191) females, who were chosen randomly from distinguished schools. In order to achieve the research objectives, the researcher adopted t
... Show MoreAbstract
Most universities in the world are largely committed to creating credible and transparent admission standards that provide justice in admission and have the ability to predict students' performance in their chosen programs. Hence, this study aimed to reveal the predictive ability of the acceptance criteria for the level of performance of master's students in the College of Education at Sultan Qaboos University. Quantitative data were collected from (115) students' admission documents for those accepted in the postgraduate programs for the academic year 2019-2020, and GPA data was collected from students’ transcripts for the fall semester of 2019. Qualitative data were also collected from the interviews
... Show More