Preferred Language
Articles
/
ijs-5203
Educational Data Mining For Predicting Academic Student Performance Using Active Classification
...Show More Authors

     The increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning had been utilized in the classification. Four techniques had been applied for classifying the features: Random Forest (RF) algorithm, Label Propagation (LP), Logistic Regression (LR), and Multilayer Perceptron (MLP). The accuracies of prediction were 95.121%, 92.195%, 92.292%, and 93.951% respectively. Also, the RF algorithm has been utilized for assorting the features depending on their importance.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 02 2022
Journal Name
Karbala International Journal Of Modern Science
Performance Simulation for Adaptive Optics Technique Using OOMAO Toolbox
...Show More Authors

The Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Predicting of heavy metals in some areas of Iraq using spectral analysis techniques
...Show More Authors
Abstract<p>Soil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in pr</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Active Alumina Extraction from Iraqi Bauxite for Catalyst's Support
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
International Journal Of Computer Techniques
Multifractal-Based Features for Medical Images Classification
...Show More Authors

This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4

... Show More
Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Brain MR Images Classification for Alzheimer’s Disease
...Show More Authors

    Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification f

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Semi-Active Damping of Mechanical Vibrating Systems Using Variable Stiffness Actuator
...Show More Authors

      In this research, a variable stiffness actuator is proposed to enhance the damping of the mechanical vibrating system. The frequency response analysis of the vibrating system is dependant in order to analyze and synthesis this semi-active damping, where the suggested process is using active filter to estimate the present frequency of the vibration system, and this will limit the value of the stiffness of the vibrated system. Two active filter s are needed, low-pass-filter (LPF) to choose the higher stiffness of the actuator at small frequencies as well as more damping and high-pass-filter (HPF) to choose the lower stiffness of the actuator at high frequencies as well as more damping, and so

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Monitoring of south Iraq marshes using classification and change detection techniques
...Show More Authors

Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Swarm And Evolutionary Computation
A new multi-objective evolutionary framework for community mining in dynamic social networks
...Show More Authors

View Publication
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Wed Nov 25 2015
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Subject Independent Facial Emotion Classification Using Geometric Based Features
...Show More Authors

Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Clouds Height Classification Using Texture Analysis of Meteosat Images
...Show More Authors

In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used

... Show More
View Publication Preview PDF
Crossref