The increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning had been utilized in the classification. Four techniques had been applied for classifying the features: Random Forest (RF) algorithm, Label Propagation (LP), Logistic Regression (LR), and Multilayer Perceptron (MLP). The accuracies of prediction were 95.121%, 92.195%, 92.292%, and 93.951% respectively. Also, the RF algorithm has been utilized for assorting the features depending on their importance.
In current generation of technology, a robust security system is required based on biometric trait such as human gait, which is a smooth biometric feature to understand humans via their taking walks pattern. In this paper, a person is recognized based on his gait's style that is captured from a video motion previously recorded with a digital camera. The video package is handled via more than one phase after splitting it into a successive image (called frames), which are passes through a preprocessing step earlier than classification procedure operation. The pre-processing steps encompass converting each image into a gray image, cast off all undesirable components and ridding it from noise, discover differen
... Show MoreThe ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
The present study aims to identify wisdom-based thinking and its relationship to psychological capital. It further aims to find out the differences in the level of wisdom-based thinking and psychological capital according to the variables of gender and specialization (scientific, humanities). To achieve this, the study has been conducted on a sample of (380) male and female students. The two scales, wisdom-based thinking and psychological capital are implemented to the sample after being constructed by the researcher and after ensuring their psychometric characteristics' suitability for the study's aims. Results concerning the first aim have shown that there is a significant relationship among students. The second aim has revealed that t
... Show More
Abstract This research deals with the definition of the concept of nodal purposes, And what is related to it, from its aim and importance, And for the purposes of the importance of Streptococcus In trying to understand the nodal truths For different minds, Especially with those who object to the introduction of belief in purposes studies, This research has two requirements: The first requirement: the concept and the aim of contractual purposes,It consists of two branches, The first is in the concept of nodal purposes, And it dealt with the definitions in terms of language and terminology And what we see is proportional to what aim |
In regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement
... Show MoreOne of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing pr
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreImage recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show MoreHuman action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur
... Show More