The industrial factory is one of the challenging environments for future wireless communication systems, where the goal is to produce products with low cost in short time. This high level of network performance is achieved by distributing massive MIMO that provides indoor networks with joint beamforming that enhances 5G network capacity and user experience as well. Judging from the importance of this topic, this study introduces a new optimization problem concerning the investigation of multi-beam antenna (MBA) coverage possibilities in 5G network for indoor environments, named Base-station Beams Distribution Problem (BBDP). This problem has an extensive number of parameters and constrains including user’s location, required data rate and number of antenna elements. Thus, BBDP can be considered as NP-hard problem, where complexity increases exponentially as its dimension increases. Therefore, it requires a special computing method that can handle it in a reasonable amount of time. In this study, several differential evolution (DE) variants have been suggested to solve the BBDP problem. The results show that among all DE variants the self-adaptive DE (jDE) can find feasible solutions and outperform the classical ones in all BBDP scenarios with coverage rate of 85% and beam diameter of 500 m.
Background: Myocardial infarction (MI) is distinguished by the necrosis of myocardial cells as a result of substantial and prolonged ischemia. Anxiety, problems sleeping, and feelings of depression are some of the most common psychosocial consequences of having a myocardial infarction. Aim: The purpose of this study is to evaluate the effects of post-myocardial infarction on patients' levels of anxiety, depression, and quality of sleep. Method: The collection of data from 94 individuals with MI was carried out according to a descriptive cross-sectional design. Sleep quality, depression, and anxiety were evaluated using standard questionnaires. Results: 69.1% of the participants reported having trouble getting quality sleep. The perc
... Show MoreThis work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
An efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t
... Show More