The industrial factory is one of the challenging environments for future wireless communication systems, where the goal is to produce products with low cost in short time. This high level of network performance is achieved by distributing massive MIMO that provides indoor networks with joint beamforming that enhances 5G network capacity and user experience as well. Judging from the importance of this topic, this study introduces a new optimization problem concerning the investigation of multi-beam antenna (MBA) coverage possibilities in 5G network for indoor environments, named Base-station Beams Distribution Problem (BBDP). This problem has an extensive number of parameters and constrains including user’s location, required data rate and number of antenna elements. Thus, BBDP can be considered as NP-hard problem, where complexity increases exponentially as its dimension increases. Therefore, it requires a special computing method that can handle it in a reasonable amount of time. In this study, several differential evolution (DE) variants have been suggested to solve the BBDP problem. The results show that among all DE variants the self-adaptive DE (jDE) can find feasible solutions and outperform the classical ones in all BBDP scenarios with coverage rate of 85% and beam diameter of 500 m.
In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.
In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and
... Show MoreRecently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreA fuzzy valued diffusion term, which in a fuzzy stochastic differential equation refers to one-dimensional Brownian motion, is defined by the meaning of the stochastic integral of a fuzzy process. In this paper, the existence and uniqueness theorem of fuzzy stochastic ordinary differential equations, based on the mean square convergence of the mathematical induction approximations to the associated stochastic integral equation, are stated and demonstrated.
In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth
... Show MoreA reliable differential pulse polarographic (DPP) method has been developed and applied for the determination of ibuprofen IBU in dosage form with dropping mercury electrode (DME) versus Ag/AgCl. The best peak was found at cathodic peak of -1.18 V in phosphate buffer at pH=4 and 0.025M of KNO3 as supporting electrolyte. In order to obtaine the highest sensitivity, instrumental and experimental parameters were examined including the type and concentration of supporting electrolyte, pH of buffer solution, pulse amplitude and voltage step time. Diffusion current showed a direct linear relationship to ibuprofen concentration in the range of (5 – 30) μg. mL-1 (2.43× 10-5
... Show MoreThe aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.
Focusing of Gaussian laser beam through nonlinear media can induce spatial self- phase modulation which forms a far field intensity pattern of concentric rings. The nonlinear refractive index change of material depends on the number of pattern rings. In this paper, a formation of tunable nonlinear refractive index change of hybrid functionalized carbon nanotubes/silver nanoparticles acetone suspensions (F-MWCNTs/Ag-NPs) at weight mixing ratio of 1:3 and volume fraction of 6x10-6 , 9x10-6 , and 18x10-6 using laser beam at wavelength of 473nm was investigated experimentally. The results showed that tunable nonlinear refractive indices were obtained and increasing of incident laser power density led to increase the nonlinear refractive inde
... Show More