The industrial factory is one of the challenging environments for future wireless communication systems, where the goal is to produce products with low cost in short time. This high level of network performance is achieved by distributing massive MIMO that provides indoor networks with joint beamforming that enhances 5G network capacity and user experience as well. Judging from the importance of this topic, this study introduces a new optimization problem concerning the investigation of multi-beam antenna (MBA) coverage possibilities in 5G network for indoor environments, named Base-station Beams Distribution Problem (BBDP). This problem has an extensive number of parameters and constrains including user’s location, required data rate and number of antenna elements. Thus, BBDP can be considered as NP-hard problem, where complexity increases exponentially as its dimension increases. Therefore, it requires a special computing method that can handle it in a reasonable amount of time. In this study, several differential evolution (DE) variants have been suggested to solve the BBDP problem. The results show that among all DE variants the self-adaptive DE (jDE) can find feasible solutions and outperform the classical ones in all BBDP scenarios with coverage rate of 85% and beam diameter of 500 m.
<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreUnmanned aerial vehicles (UAVs) can provide valuable spatial information products for many projects across a wide range of applications. One of the major challenges in this discipline is the quality of positioning accuracy of the resulting mapping products in professional photogrammetric projects. This is especially true when using low-cost UAV systems equipped with GNSS receivers for navigation. In this study, the influence of UAV flight direction and camera orientation on positioning accuracy in an urban area on the west bank of the Euphrates river in Iraq was investigated. Positioning accuracy was tested in this study with different flight directions and camera orientation settings using a UAV autopilot app (Pix4Dcapture software
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
Cadastral map environment is directed, more than ever before, towards Artificial Intelligence use to produce fast and accurate maps and keep up with the huge population growth. The traditional approach currently in production of maps is expensive and effort-intensive in addition to be considered as highly time-consuming process. UAV-based cadastral mapping imagery that use automatic techniques are newly being exploited to accelerate the process of production or updating. The state-of-the-art intelligent algorithms are capable to extract land boundaries from images better than conventional techniques. This paper presents an automatic workflow of cadastral map production based on land boundary and automatic f
... Show MoreSmishing is the delivery of phishing content to mobile users via a short message service (SMS). SMS allows cybercriminals to reach out to mobile end users in a new way, attempting to deliver phishing messages, mobile malware, and online scams that appear to be from a trusted brand. This paper proposes a new method for detecting smishing by combining two detection methods. The first method is uniform resource locators (URL) analysis, which employs a novel combination of the Google engine and VirusTotal. The second method involves examining SMS content to extract efficient features and classify messages as ham or smishing based on keywords contained within them using four well-known classifiers: support vector machine (SVM), random
... Show MoreInformation security in data storage and transmission is increasingly important. On the other hand, images are used in many procedures. Therefore, preventing unauthorized access to image data is crucial by encrypting images to protect sensitive data or privacy. The methods and algorithms for masking or encoding images vary from simple spatial-domain methods to frequency-domain methods, which are the most complex and reliable. In this paper, a new cryptographic system based on the random key generator hybridization methodology by taking advantage of the properties of Discrete Cosine Transform (DCT) to generate an indefinite set of random keys and taking advantage of the low-frequency region coefficients after the DCT stage to pass them to
... Show MoreThe aim of the research is to investigate the effect of cold plasma on the bacteria grown on texture of sesame paste in its normal particle and nano particle size. Starting by using the image segmentation process depending on the threshold method, it is used to get rid of the reflection of the glass slides on which the sesame samples are placed. The classification process implemented to separate the sesame paste texture from normal and abnormal texture. The abnormal texture appears when the bacteria has been grown on the sesame paste after being left for two days in the air, unsupervised k-mean classification process used to classify the infected region, the normal region and the treated region. The bacteria treated with cold plasma, t
... Show MoreThe research aims to design a narrow-band frequency drive amplifier (1.5GHz -1.6GHz), which is used to boost the transmitter amplifier's input signal or amplify the GPS, GlONASS signals at the L1 band.
The Power Amplifier printed circuit board (PCB) prototype was designed using InGaP HBT homogeneous technology transistor and GaAs Heterojunction Bipolar Transistor (HBT) transistor. Two models have been compared; one of the models gave 16dB gain, and the other gave 23dB when using an input power signal (-15dBm). The PCB consumes 2.4W of power and has a physical dimension of 11 x 4 cm.
In this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface pl
... Show More