A mathematical model was created to study the influences of Hall current and Joule heating with wall slip conditions on peristaltic motion of Rabinowitsch fluid model through a tapered symmetric channel with Permeable Walls. The governing equations are simplified under low Reynolds number and the long-wavelength approximations. The perturbation method is used to solve the momentum equation. The physiological phenomena are studied for a certain set of pertinent parameters. The effects offered here show that the presence of the hall parameter, coefficient of pseudo-plasticity, and Hartman number impact the flow of the fluid model. Additional, study reveals that a height in the Hall parameter and the velocity slip parameter increases the trapping bolus's apparition. Furthermore, the magnitude of the trapped bolus can be reduced by enhancing the magnetic field.
In this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.
In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. Small
Reynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equatio
This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer in two cases ,the first: cha
... Show MoreThe aim of this paper is to study the combined effects of the concentration and the thermo-diffusion on the unsteady oscillation flow of an incompressible Carreau fluid through an inclined porous channel. The temperature is assumed to affect exponentially the fluid's viscosity. We studied fluid flow in an inclined channel under the non-slip condition at the wall. We used the perturbation series method to solve the nonlinear partial differential equations. Numerical results were obtained for velocity distribution, and through the graphs, it was found that the velocity of fluid has a direct relation with Soret number, Peclet number, and Grashof number, while it has a reverse variation with chemical reaction, Schmidt number, frequency of os
... Show MoreThis paper aims to study a mathematical model showing the effects of mass transfer on MHD oscillatory flow for Carreau fluid through an inclined porous channel under the influence of temperature and concentration at a slant angle on the centre of the flow with the effect of gravity. We discussed the effects of several parameters that are effective on fluid movement by analyzing the graphs obtained after we reached the momentum equation solution using the perturbation series method and the MATHEMATICA program to find the numerical results and illustrations. We observed an increased fluid movement by increasing radiation and heat generation while fluid movement decreased by increasing the chemical reaction parameter and Froude number. 
... Show MoreThe properties of capturing of peristaltic flow to a chemically reacting couple stress fluid through an inclined asymmetric channel with variable viscosity and various boundaries are investigated. we have addressed the impacts of variable viscosity, different wave forms, porous medium, heat and mass transfer for peristaltic transport of hydro magnetic couple stress liquid in inclined asymmetric channel with different boundaries. Moreover, The Fluid viscosity assumed to vary as an exponential function of temperature. Effects of almost flow parameters are studied analytically and computed. An rising in the temperature and concentration profiles return to heat and mass transfer Biot numbers. Noteworthy, the Soret and Dufour number effect resul
... Show MoreIn this paper, the peristaltic flow under the impact of heat transfer, rotation and induced magnetic field of a two dimensional for the Bingham plastic fluid is discussed. The coupling among of momentum with rotational, energy and the induced magnetic field equations are achieved by the perturbation approximation method and the mathematica software to solve equations that are nonlinear partial differential equations. The fluid moves in an asymmetric channel, and assumption the long wavelength and low Reynolds number, approximation are used for deriving a solution of the flow. Expression of the axial velocity, temperature, pressure gradient, induced magnetic field, magnetic force, current density are developed the eff
... Show MoreIn this paper, we study the impact of the variable rotation and different variable on mixed convection peristaltic flow of incompressible viscoplastic fluid. This is investigated in two dimensional asymmetric channel, such as the density, viscosity, rate flow, Grashof number, Bingham number, Brinkman number and tapered, on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid with consideration small Reynolds number and long wavelength, peristaltic transport in asymmetric channel tapered horizontal channel and non-uniform boundary walls to possess different amplitude wave and phases. Perturbation technique is used to get series solutions. The effects of different values of these parame
... Show More