In today's world, digital image storage and transmission play an essential role,where images are mainly involved in data transfer. Digital images usually take large storage space and bandwidth for transmission, so image compression is important in data communication. This paper discusses a unique and novel lossy image compression approach. Exactly 50% of image pixels are encoded, and other 50% pixels are excluded. The method uses a block approach. Pixels of the block are transformed with a novel transform. Pixel nibbles are mapped as a single bit in a transform table generating more zeros, which helps achieve compression. Later, inverse transform is applied in reconstruction, and a single bit value from the table is remapped into pixel nibbles. With these nibbles, pixel values of the block are reconstructed without any loss. The average method is used in reconstruction of excluded pixels. This approach achieves better quality in reconstructed test images at lower PSNR values ranging from 33dB to 44dB. Compression ratio achieved is more than 2. Correctness ratio achieved by proposed method is more than 0.5.
Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreImage fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,
... Show MoreIt is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.
In recent years, Elliptic Curve Cryptography (ECC) has attracted the attention of
researchers and product developers due to its robust mathematical structure and
highest security compared to other existing algorithms like RSA. It is found to give
an increased security compared to RSA for the same key-size or same security as
RSA with less key size. In this paper a new approach is proposed for encrypting
digital image using the arithmetic of elliptic curve algebra. The proposed approach
produced a new mask for encrypt the digital image by use a new convolution
processes based on ECC algebra operations and work as symmetric cryptographic
system instead of asymmetric system. A new approach combined both compression
Foreground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high det
... Show MoreBackground: Strain imaging assessing regional myocardial deformation and can be used to quantify regional myocardial function and differentiate between ischemic and non ischemic myocardium.
Objectives: to assess sensitivity and specificity of strain imaging in detection of coronary artery disease in comparison with coronary angiography.
Patients and Methods: ninety six patients were referred to Ibn albitar center for cardiac surgery, Baghdad, Iraq with symptoms of coronary artery disease for a period between June 2014 and April 2015, all of whom were evaluated by two dimensional echocardiography and all were found to have good left ventricular systolic function with no regiona
The present paper focuses on the study of some characteristics of
comets ions by photometry method which represent by CCD camera
which it provide seeing these images in a graded light. From 0-255
when Zero (low a light intensity) and 255 (highlight intensity). These
differences of photonic intensity can be giving us a curve which
appear from any line of this image.
From these equations the focus is concentrating on determine the
temperature distribution, velocity distribution, and intensity number
distribution which is give number of particles per unit volume.
The results explained the interaction near the cometary nucleus
which is mainly affected by the new ions added to the density of the
solar wind, th
DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreGrabisch and Labreuche have recently proposed a generalization of capacities, called the bi-capacities. Recently, a new approach for studying bi-capacities through introducing a notion of ternary-element sets proposed by the author. In this paper, we propose many results such as bipolar Mobius transform, importance index, and interaction index of bi-capacities based on our approach.
This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.