In today's world, digital image storage and transmission play an essential role,where images are mainly involved in data transfer. Digital images usually take large storage space and bandwidth for transmission, so image compression is important in data communication. This paper discusses a unique and novel lossy image compression approach. Exactly 50% of image pixels are encoded, and other 50% pixels are excluded. The method uses a block approach. Pixels of the block are transformed with a novel transform. Pixel nibbles are mapped as a single bit in a transform table generating more zeros, which helps achieve compression. Later, inverse transform is applied in reconstruction, and a single bit value from the table is remapped into pixel nibbles. With these nibbles, pixel values of the block are reconstructed without any loss. The average method is used in reconstruction of excluded pixels. This approach achieves better quality in reconstructed test images at lower PSNR values ranging from 33dB to 44dB. Compression ratio achieved is more than 2. Correctness ratio achieved by proposed method is more than 0.5.
The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
Ultrasound imaging has some problems with image properties output. These affects the specialist decision. Ultrasound noise type is the speckle noise which has a grainy pattern depending on the signal. There are two parts of this study. The first part is the enhancing of images with adaptive Weiner, Lee, Gamma and Frost filters with 3x3, 5x5, and 7x7 sliding windows. The evaluated process was achieved using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE), and maximum difference (MD) criteria. The second part consists of simulating noise in a standard image (Lina image) by adding different percentage of speckle noise from 0.01 to 0.06. The supervised classification based minimum di
... Show MoreIt is known that images differ from texts in many aspects, such as high repetition and correlation, local structure, capacitance characteristics and frequency. As a result, traditional encryption methods can not be applied to images. In this paper we present a method for designing a simple and efficient messy system using a difference in the output sequence. To meet the requirements of image encryption, we create a new coding system for linear and nonlinear structures based on the generation of a new key based on chaotic maps.
The design uses a kind of chaotic maps including the Chebyshev 1D map, depending on the parameters, for a good random appearance. The output is a test in several measurements, including the complexity of th
... Show MoreThis paper presents a numerical scheme for solving nonlinear time-fractional differential equations in the sense of Caputo. This method relies on the Laplace transform together with the modified Adomian method (LMADM), compared with the Laplace transform combined with the standard Adomian Method (LADM). Furthermore, for the comparison purpose, we applied LMADM and LADM for solving nonlinear time-fractional differential equations to identify the differences and similarities. Finally, we provided two examples regarding the nonlinear time-fractional differential equations, which showed that the convergence of the current scheme results in high accuracy and small frequency to solve this type of equations.
Identifying people by their ear has recently received import attention in the literature. The accurate segmentation of the ear region is vital in order to make successful person identification decisions. This paper presents an effective approach for ear region segmentation from color ear images. Firstly, the RGB color model was converted to the HSV color model. Secondly, thresholding was utilized to segment the ear region. Finally, the morphological operations were applied to remove small islands and fill the gaps. The proposed method was tested on a database which consisted of 105 ear images taken from the right sides of 105 subjects. The experimental results of the proposed approach on a variety of ear images revealed that this approac
... Show MoreMerging images is one of the most important technologies in remote sensing applications and geographic information systems. In this study, a simulation process using a camera for fused images by using resizing image for interpolation methods (nearest, bilinear and bicubic). Statistical techniques have been used as an efficient merging technique in the images integration process employing different models namely Local Mean Matching (LMM) and Regression Variable Substitution (RVS), and apply spatial frequency techniques include high pass filter additive method (HPFA). Thus, in the current research, statistical measures have been used to check the quality of the merged images. This has been carried out by calculating the correlation a
... Show MoreThis paper presents a new and effective procedure to extract shadow regions of high- resolution color images. The method applies this process on modulation the equations of the band space a component of the C1-C2-C3 which represent RGB color, to discrimination the region of shadow, by using the detection equations in two ways, the first by applying Laplace filter, the second by using a Kernel Laplace filter, as well as make comparing the two results for these ways with each other's. The proposed method has been successfully tested on many images Google Earth Ikonos and Quickbird images acquired under different lighting conditions and covering both urban, roads. Experimental results show that this algorithm which is simple and effective t
... Show MoreThe security of multimedia data becoming important spatial data of monitoring systems that contain videos prone to attack or escape via the internet, so to protect these videos used proposed method combined between encryption algorithm and sign algorithm to get on authenticated video. The proposed encryption algorithm applied to secure the video transmission by encrypt it to become unclear. This done by extract video to frames and each frame separate to three frames are Red, Green, and Blue, this frames encrypt by using three different random keys that generated by a function for generating random numbers, as for sign algorithm applied for authentication purpose that enable the receiver from sure of the identity of the sender and provide
... Show MoreSemantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show MoreIn this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.